Patents by Inventor Fred Bonhomme

Fred Bonhomme has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11843121
    Abstract: Systems and methods for continuous lamination of battery electrodes may include a cathode, an electrolyte, and an anode, where the anode includes a current collector, a cathode, an electrolyte, and an anode, the anode comprising a polymeric adhesive layer coated onto the current collector, and an active material coated onto the polymeric adhesive layer such that the polymeric adhesive layer is arranged between the active material and the current collector, wherein the anode is subjected to a heat treatment to induce pyrolysis after application of the polymeric adhesive layer to the current collector and application of the active material to the polymeric adhesive layer, the heat being applied to the anode at a temperature between 500 and 850 degrees C.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 12, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Monika Chhorng, Jose Vega, Benjamin Park, Giulia Canton, Fred Bonhomme
  • Patent number: 11764346
    Abstract: Systems and methods for silicon-dominant lithium-ion cells with controlled utilization of silicon may include a cathode, an electrolyte, and an anode, where the anode has an active material comprising more than 50% silicon. The battery may be charged by lithiating silicon while not lithiating carbon. The active material may comprise more than 70% silicon. A voltage of the anode during discharge of the battery may remain above a minimum voltage at which silicon can be lithiated. The anode may have a specific capacity of greater than 3000 mAh/g. The battery may have a specific capacity of greater than 1000 mAh/g. The anode may have a greater than 90% initial Coulombic efficiency and may be polymer binder free. The battery may be charged at a 10C rate or higher. The battery may be charged at temperatures below freezing without lithium plating. The electrolyte may comprise a liquid, solid, or gel.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: September 19, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Benjamin Park, Ian Browne, Sung Won Choi, Fred Bonhomme
  • Patent number: 11764350
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a thickness of the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: September 19, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
  • Patent number: 11728468
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a metal used for the current collector, and/or a lamination process that adheres the active material to the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: August 15, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
  • Publication number: 20230238507
    Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells. A slurry that includes silicon particles and a binder material may be applied to a current collector film, and the slurry may be processed to form a precursor composite film coated on the current collector film. The current collector film with the coated precursor composite film may be rolled into a precursor composite roll. A heat treatment may be applied to the current collector film with the coated precursor composite film in an environment including nitrogen gas, to convert the coated precursor composite film to a pyrolyzed composite film coated on the current collector film. The heat treatment may include applying the heat treatment to the precursor composite roll in whole and/or applying the heat treatment to the current collector film with the coated precursor composite film as it is continuously fed.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 27, 2023
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Publication number: 20230081140
    Abstract: Systems and methods are disclosed that provide for pyrolysis reactions to be performed at reduced temperatures that convert non-conductive precursor polymers to conductive carbon suitable for use in electrode materials, which may be incorporated into a cathode, an electrolyte, and an anode, where the pyrolysis method may include one or more catalysts or reactive reagents.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 16, 2023
    Inventors: Ian Browne, Benjamin Yong Park, Giulia Canton, Fred Bonhomme
  • Patent number: 11594714
    Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells and may include applying a slurry to a current collector film, the slurry comprising silicon particles and a binder material; drying the slurry to form a precursor composite film; rolling the current collector film into a precursor composite roll; and applying a heat treatment to the precursor composite film and the current collector film in a nitrogen gas environment, wherein the heat treatment is configured for converting the precursor composite film to a pyrolyzed composite film. The heat treatment may include one or both of: applying the heat treatment to a roll comprising the precursor composite roll in whole; and applying the heat treatment to the current collector film as it is continuously fed from the precursor composite roll.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 28, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Publication number: 20230006198
    Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.
    Type: Application
    Filed: September 13, 2022
    Publication date: January 5, 2023
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
  • Publication number: 20220302430
    Abstract: Systems and methods are provided for high volume roll-to-roll transfer lamination of electrodes for silicon-dominant anode cells.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Patent number: 11450850
    Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 20, 2022
    Assignee: Enevate Corporation
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
  • Patent number: 11362315
    Abstract: Systems and methods are provided for high volume roll-to-roll transfer lamination of electrodes for silicon-dominant anode cells.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: June 14, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Publication number: 20210376330
    Abstract: Systems and methods are provided for a reaction barrier between an electrode active material and a current collector. An electrode may comprise an active material, a metal foil, and a polymer. The polymer (such as polyamide-imide (PAI)) may be configured to provide a carbonized barrier between the active material and the metal foil after pyrolysis.
    Type: Application
    Filed: August 11, 2021
    Publication date: December 2, 2021
    Inventors: BENJAMIN YONG PARK, RAHUL R. KAMATH, FRED BONHOMME
  • Publication number: 20210354579
    Abstract: Systems and methods for collocated gasoline pumps and electric vehicle charging stations for ultra-high speed charging may include a fuel station having fuel pumps, electric vehicle supply equipment, and a charge buffer. The charge buffer may receive electric current from an electricity supply grid and supply current to the electric vehicle supply equipment. The electric vehicle supply equipment may be configured to control throttling down of maximum charging power based on a type of cell. The controlling may include delaying the throttling for a first type of cell relative to a second type of cell. The electric vehicle supply equipment may be configured to apply a voltage to batteries above their battery voltage limit when charging. The electric vehicle supply equipment may charge batteries at a rate greater than 4 C, 5.6 C, or 10 C. The electric vehicle supply equipment may supply greater than 120 kW.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: Benjamin Park, Fred Bonhomme
  • Publication number: 20210288304
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include forming an anode by pyrolyzing an active material layer comprising a binder and silicon particles in a temperature range of 600 to 800° C.; and forming a battery cell comprising a cathode, an electrolyte, and the anode, where the anode comprises the pyrolyzed active material layer on a current collector. A lateral expansion of the anode during operation may be less than 2%, less than 1%, or less than 0.6%. The active material layer may be pyrolyzed on the current collector or may be pyrolyzed on a substrate before laminating on the current collector. The anode active material layer may be pyrolyzed using a 1 hour dwell time or less or using a 2 hour dwell time or less. The active material layer may be pyrolyzed in a temperature range of 650 to 800° C.
    Type: Application
    Filed: April 27, 2021
    Publication date: September 16, 2021
    Inventors: Rahul Kamath, Fred Bonhomme, Ian Browne
  • Publication number: 20210273213
    Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells and may include applying a slurry to a current collector film, the slurry comprising silicon particles and a binder material; drying the slurry to form a precursor composite film; rolling the current collector film into a precursor composite roll; and applying a heat treatment to the precursor composite film and the current collector film in a nitrogen gas environment, wherein the heat treatment is configured for converting the precursor composite film to a pyrolyzed composite film. The heat treatment may include one or both of: applying the heat treatment to a roll comprising the precursor composite roll in whole; and applying the heat treatment to the current collector film as it is continuously fed from the precursor composite roll.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Patent number: 11101465
    Abstract: Systems and methods are provided for a reaction barrier between an electrode active material and a current collector. An electrode may comprise an active material, a metal foil, and a polymer. The polymer (such as polyamide-imide (PAI)) may be configured to provide a carbonized barrier between the active material and the metal foil after pyrolysis.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: August 24, 2021
    Assignee: Enevate Corporation
    Inventors: Benjamin Yong Park, Rahul R. Kamath, Fred Bonhomme
  • Publication number: 20210143401
    Abstract: Systems and methods are provided for control of thermal transfer during electrode pyrolysis based processing. A thermal rod may be used for processing battery electrodes, with the thermal rod being configured for engaging an electrode roll. At least a portion of the thermal rod is disposed within the electrode roll once it is engaged with the electrode roll, and the thermal rod is configured for providing thermal transfer into the electrode roll during processing of the electrode roll, with the processing including pyrolysis processing of the electrode roll.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 13, 2021
    Inventors: Fred Bonhomme, Benjamin Park, Todd Tatar, Ian Browne
  • Publication number: 20210143428
    Abstract: Systems and methods are disclosed that provide for pyrolysis reactions to be performed at reduced temperatures that convert non-conductive precursor polymers to conductive carbon suitable for use in electrode materials, which may be incorporated into a cathode, an electrolyte, and an anode, where the pyrolysis method may include one or more catalysts or reactive reagents.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 13, 2021
    Inventors: Ian Browne, Benjamin Park, Giulia Canton, Fred Bonhomme
  • Publication number: 20210143432
    Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
  • Publication number: 20210143438
    Abstract: Systems and methods for continuous lamination of battery electrodes may include a cathode, an electrolyte, and an anode, where the anode includes a current collector, a cathode, an electrolyte, and an anode, the anode comprising a polymeric adhesive layer coated onto the current collector, and an active material coated onto the polymeric adhesive layer such that the polymeric adhesive layer is arranged between the active material and the current collector, wherein the anode is subjected to a heat treatment to induce pyrolysis after application of the polymeric adhesive layer to the current collector and application of the active material to the polymeric adhesive layer, the heat being applied to the anode at a temperature between 500 and 850 degrees C.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Monika Chhorng, Jose Vega, Benjamin Park, Giulia Canton, Fred Bonhomme