Patents by Inventor Fred D. Bailey

Fred D. Bailey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6921962
    Abstract: A thin film resistor (60) is contained between two metal interconnect layers (40, 100) of an integrated circuit. Contact may be made to the resistor (60) through vias (95) from the metal layer (100) above the resistor (60) to both the thin film resistor (60) and the underlying metal layer (40) simultaneously. The resistor (60) may include portions of a hard mask (70) under the vias (95) to protect the resistor material (60) during the via (95) etch. This design provides increased flexibility in fabricating the resistor (60) since processes, materials, and chemicals do not have to satisfy the conditions of both the resistor (60) and the rest of the integrated circuit (especially the interconnect layer 40) simultaneously.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: July 26, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Fred D. Bailey, Stuart M. Jacobsen
  • Patent number: 6737326
    Abstract: A method for integrating a thin film resistor into an interconnect process flow where one of the metal layers is used as a hardmask. After a via (42) etch and fill, the thin film resistor material (62) is deposited. The metal interconnect layer (76) is then deposited, including any barrier layers desired. The metal leads (70) are then etched together with the shape of the thin film resistor (60). The metal (76) over the thin film resistor (60) is then removed.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: May 18, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Stuart M. Jacobsen, Louis N. Hutter, Fred D. Bailey
  • Patent number: 6645821
    Abstract: A thin film resistor (60) is contained between two metal interconnect layers (40, 100) of an integrated circuit. Contact may be made to the resistor (60) through vias (95) from the metal layer (100) above the resistor (60) to both the thin film resistor (60) and the underlying metal layer (40) simultaneously. The resistor (60) may include portions of a hard mask (70) under the vias (95) to protect the resistor material (60) during the via (95) etch. This design provides increased flexibility in fabricating the resistor (60) since processes, materials, and chemicals do not have to satisfy the conditions of both the resistor (60) and the rest of the integrated circuit (especially the interconnect layer 40) simultaneously.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: November 11, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Fred D. Bailey, Stuart M. Jacobsen
  • Publication number: 20020102806
    Abstract: A thin film resistor (60) is contained between two metal interconnect layers (40, 100) of an integrated circuit. Contact may be made to the resistor (60) through vias (95) from the metal layer (100) above the resistor (60) to both the thin film resistor (60) and the underlying metal layer (40) simultaneously. The resistor (60) may include portions of a hard mask (70) under the vias (95) to protect the resistor material (60) during the via (95) etch. This design provides increased flexibility in fabricating the resistor (60) since processes, materials, and chemicals do not have to satisfy the conditions of both the resistor (60) and the rest of the integrated circuit (especially the interconnect layer 40) simultaneously.
    Type: Application
    Filed: March 20, 2002
    Publication date: August 1, 2002
    Inventors: Fred D. Bailey, Stuart M. Jacobsen
  • Publication number: 20010049199
    Abstract: A method for integrating a thin film resistor into an interconnect process flow where one of the metal layers is used as a hardmask. After a via (42) etch and fill, the thin film resistor material (62) is deposited. The metal interconnect layer (76) is then deposited, including any barrier layers desired. The metal leads (70) are then etched together with the shape of the thin film resistor (60). The metal (76) over the thin film resistor (60) is then removed.
    Type: Application
    Filed: May 10, 2001
    Publication date: December 6, 2001
    Inventors: Philipp Steinmann, Stuart M. Jacobsen, Louis N. Hutter, Fred D. Bailey
  • Patent number: 6326256
    Abstract: A thin film resistor processing flow solves the problem of accurately incorporating the resistor (80) to be trimmed in an optimized multilayer stack (60,70). This is achieved by measuring the total thickness of the dielectric stack (60) between the silicon substrate and the top of the dielectric stack just prior to the formation of the thin film resistor (80). Then, the thickness of the dielectric stack (60) is adjusted (60+70) to be an odd integer number of laser quarter wavelengths. The thin film resistor (60) is then formed and overlying dielectric (120) is deposited. The thickness of the overlying dielectric (120) may likewise be adjusted (120+130) to be an odd integer number of laser quarter wavelengths.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: December 4, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Fred D. Bailey, Stuart M. Jacobsen