Patents by Inventor Fred Fietzke

Fred Fietzke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050196548
    Abstract: Component having corrosion protection and including a base body made of one of a steel material and a light metal material. A corrosion-inhibiting surface layer that is a dense, fine-grained, largely pore-free structure formed by plasma-based vapor deposition. The surface layer having an average thickness of between 1 ?m and 50 ?m and being at least one layer of at least one of aluminum, an aluminum alloy, and an aluminum compound. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: February 25, 2005
    Publication date: September 8, 2005
    Applicant: Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Klaus Goedicke, Fred Fietzke, Steffen Straach, Volker Kirchhoff, Klaus-Dieter Hofmann, Frank Hollstein
  • Patent number: 6673430
    Abstract: The present invention describes a coated cutting tool for metal machining. The coating is formed by one or more layers of refractory compounds of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C. preferably 550° C. to 650° C., depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;0- angles 45.8 and 66.8 degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: January 6, 2004
    Assignees: Sandvik AB, Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjöstrand, Björn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Patent number: 6620299
    Abstract: Process and device for coating substrates utilizing bipolar pulsed magnetron sputtering in the frequency range between 10 and 100 kHz, wherein the device includes at least three magnetron sources. Each of the at least three magnetron sources includes a target. At least two of the targets are connected to a potential-free bipolar power supply device. The at least three targets are arranged relative to the substrates in such a way that the substrates are located at least partially inside a discharge current during a coating of the substrates. A switching device is adapted to connect the targets to the bipolar power supply device. A technological predetermined program is used for controlling the switching device. The switching device connects at least two of the targets at a time to the bipolar power supply device according to the technologically predetermined program.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: September 16, 2003
    Assignee: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V.
    Inventors: Fred Fietzke, Klaus Goedicke, Siegfried Schiller
  • Patent number: 6554971
    Abstract: The present invention describes a coating cutting tool for metal machining and a process for producing such tools. The coating is composed of one or more layers of refractory compounds of which at least one layer consists of nanocrystalline aluminum spinel of the type (Me)xAl2O3+x where Me is a second metal and 0<x≦1, deposited by Physical Vapor Deposition.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: April 29, 2003
    Assignee: Sandvik AB
    Inventors: Olaf Zywitzki, Klaus Goedicke, Fred Fietzke, Siegfried Schiller, Torbjörn Selinder, Mats Ahlgren
  • Publication number: 20030027015
    Abstract: The present invention describes a coated cutting tool for metal maching. The coating is formed by one or more layers of refractory compounds of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700 C.° preferably 550 C.° to 650 C.°, depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;-angles 45.8 and 66.8 degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Application
    Filed: May 22, 2002
    Publication date: February 6, 2003
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjostrand, Bjorn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Patent number: 6451180
    Abstract: The present invention relates to a process for producing a coated cutting tool consisting of a coating and a substrate, wherein at least one refractory layer consisting of fine-grained, crystalline &ggr;-Al2O3 is deposited by reactive magnetron sputtering onto the moving substrate in a vacuum by pulsed magnetron sputtering in a mixture of a rare gas and a reactive gas at a pulse frequency set for 10 to 100 kHz. The deposition occurs with a rate of at least 1 nm/s with reference to a stationarily arranged substrate at a magnetron target power density in time average set for at least 10 W/cm2. The substrate temperature is in the range 400 to 700° C. and the flux of impinging particles onto each individual substrate is cyclically interrupted.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: September 17, 2002
    Assignee: Sandvik AB
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjöstrand, Björn Ljungberg
  • Patent number: 6423403
    Abstract: The present invention describes a coated substrate material. The coating is formed by one or more layers of refractory compounds of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C., preferably 550° C. to 650° C., depending on the particular substrate material. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;-angles 45.8 and 66.8 degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: July 23, 2002
    Assignees: Sandvik AB, Fraunhofer Gesillschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjöstrand, Björn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Publication number: 20020051852
    Abstract: The present invention describes a coating cutting tool for metal machining and a process for producing such tools. The coating is composed of one or more layers of refractory compounds of which at least one layer consists of nanocrystalline aluminum spinel of the type (Me)xAl2O3+x where Me is a second metal and 0<x≦1, deposited by Physical Vapor Deposition.
    Type: Application
    Filed: November 13, 2001
    Publication date: May 2, 2002
    Inventors: Olaf Zywitzki, Klaus Goedicke, Fred Fietzke, Siegfried Schiller, Torbjorn Selinder, Mats Ahlgren
  • Patent number: 6340416
    Abstract: Magnetron discharges are pulse-operated to avoid the so-called “arcing”. In the case of magnetron discharges from alternating current-fed magnetrons, the process is limited to the minor power of the energy supply because of the load-carrying capacity of the required electric components. When the magnetron discharges are fed by direct current, their effectiveness deteriorates because of the deposition of layers on the anode surfaces. The new process should enable a high supply power and prevent arcing. In magnetron discharges with at least two magnetron electrodes, the energy is supplied in such a way that at least one magnetron electrode is a cathode or anode and a number n1 of direct current pulses of said polarity is supplied. The poles of at least one magnetron electrode are then reversed and a number n2 of direct currents of this polarity are supplied. The process is carried on in this manner, the frequency of the direct current pulses being higher than that of the polarity reversals.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: January 22, 2002
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschund e.V.
    Inventors: Klaus Goedicke, Torsten Winkler, Michael Junghähnel, Fred Fietzke, Volker Kirchhoff, Jonathan Reschke
  • Publication number: 20010049011
    Abstract: The present invention describes a coated cutting tool for metal machining. The coating is composed of one or more layers of refractory compounds of which at least one layer consists of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grainsize less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C., preferably 550° C. to 650° C., depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at at the 2&thgr;-angles 45.8 and 66.8, degrees when using CuK&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [440]-direction.
    Type: Application
    Filed: February 14, 2001
    Publication date: December 6, 2001
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjostrand, Bjorn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Patent number: 6315877
    Abstract: A device for the sputter application of hard material coatings, including an exhaustible vacuum chamber, at least one sputtering source for depositing a coating material, a plurality of fixtures for supporting a plurality parts to be coated, the fixtures being mounted on planet gears which are movable via a planetary drive, a centrally disposed heating device, a reactive gas inlet, and a plurality of movable screens for covering the at least one sputtering source, the screens being arranged to surround the fixtures, wherein the heating device, the screens, and the planetary drive comprise an assembly which is removable from the vacuum chamber.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: November 13, 2001
    Assignee: Fraunhofer-Gesellschaft zur Foerdering der Angewandten Forschung e.V.
    Inventors: Klaus Goedicke, Fred Fietzke
  • Patent number: 6238786
    Abstract: The invention relates to a method for gloss coating articles or a portion of an article's surface and articles produced from this method. A corrosion-inhibiting polishing base coat is applied in a known fashion, after which a high-gloss layer produced by atomization, preferably magnetron atomization, is applied. Then, a transparent, wear-resistant top coat layer is applied in a known fashion. The articles can also be pretreated, if desired, and given a protective or other layers. By using this method, parts for vehicles, especially vehicle wheels, can be produced in a great variety of colors and with improved qualities.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: May 29, 2001
    Assignee: Dr. Ing. h.c.F. Porsche AG
    Inventors: Fritz Kaeumle, Reinhold Separautzki, Klaus Goedicke, Fred Fietzke
  • Patent number: 6210726
    Abstract: The present invention describes a coated cutting tool for metal machining. The coating is formed by one or more layers of a refractory compound of which at least one layer of fine-grained, crystalline &ggr;-phase alumina, Al2O3, with a grain size of less than 0.1 &mgr;m. The Al2O3 layer is deposited with a bipolar pulsed DMS technique (Dual Magnetron Sputtering) at substrate temperatures in the range 450° C. to 700° C., preferably 550° C. to 650° C., depending on the particular material of the tool body to be coated. Identification of the &ggr;-phase alumina is made by X-ray diffraction. Reflexes from the (400) and (440) planes occurring at the 2&thgr;-angles 45.8 and 66.8 degrees when using Cu&kgr;&agr; radiation identify the &ggr;-phase Al2O3. The alumina layer is also very strongly textured in the [(440)]-direction. The Al2O3 layer is virtually free of cracks and halogen impurities. Furthermore, the Al2O3 layer gives the cutting edge of the tool an extremely smooth surface finish.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: April 3, 2001
    Assignee: Sandvik AB
    Inventors: Siegfried Schiller, Klaus Goedicke, Fred Fietzke, Olaf Zywitzki, Mats Sjöstrand, Björn Ljungberg, Tomas Hilding, Viveka Alfredsson
  • Patent number: 6083356
    Abstract: Process and apparatus for pre-treatment of a substrate surface in a vacuum by a glow discharge for a subsequent coating process in a vacuum. The process includes maintaining a low pressure glow discharge between the substrate to be pre-treated and a counter-electrode, where the counter-electrode composed of at least a component of the coating to be deposited in the vacuum coating process. The process also includes periodically alternating a polarity of the substrate to act as a cathode or as an anode of the low pressure glow discharge, and individually controlling at least one of pulse length and discharge voltage in both polarities. A frequency of alternation of the polarity is set within a range of between 1 Hz and 1000 kHz. The apparatus includes an evacuatable vacuum chamber, a substrate holder positioned to hold a substrate to be pre-treated, at least one counter-electrode, and an alternating voltage generator coupled to the substrate to be pre-treated and the at least one counter-electrode.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: July 4, 2000
    Assignee: Fraunhofer-Gesellshaft zur Forderung der angewandten Forschung e.V.
    Inventors: Klaus Goedicke, Fred Fietzke, Jonathan Reschke, Wolfgang Hempel, Bert Scheffel, Christoph Metzner, Siegfried Schiller
  • Patent number: 6068890
    Abstract: The invention relates to a method for gloss coating articles or a portion of an article's surface and articles produced from this method. A corrosion-inhibiting polishing base coat is applied in a known fashion, after which a high-gloss layer produced by atomization, preferably magnetron atomization, is applied. Then, a transparent, wear-resistant top coat layer is applied in a known fashion. The articles can also be pretreated, if desired, and given a protective or other layers. By using this method, parts for vehicles, especially vehicle wheels, can be produced in a great variety of colors and with improved qualities.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: May 30, 2000
    Assignee: Dr. Ing. H.C.F. Porsche AG
    Inventors: Fritz Kaumle, Reinhold Separautzki, Klaus Goedicke, Fred Fietzke
  • Patent number: 5846608
    Abstract: A process an device for ion-supported vacuum coating.The process and the affiliated device is intended to permit the high-rate ating of large-surfaced, electrically conductive and electrically insulating substrates with electrically insulating and electrically conductive coatings with relatively low expenditure. The substrates are predominantly band-shaped, in particular plastic sheets with widths of over a meter.According to the invention, in an intrinsically known device for vacuum coating, alternating negative and positive voltage pulses are applied to the electrically conductive substrate or in electrically insulating substrates, to an electrode disposed directly behind them, e.g. the cooling roller, relative to the plasma or to an electrode that is disposed almost at plasma potential. The form, the voltage, and the duration of the pulses are adapted to the coating task and the material.The process is used particularly for depositing abrasion protection, corrosion protection, and barrier coatings.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: December 8, 1998
    Assignee: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Manfred Neumann, Klaus Goedicke, Siegfried Schiller, Jonathan Reschke, Henry Morgner, Falk Milde, Fred Fietzke
  • Patent number: 5698314
    Abstract: Compound body of a vacuum coated sintered material and a process for its production. Such compound bodies, when coated in a known manner, have a carrier of sintered material coated with a layer that is thermally, mechanically and chemically unstable, with their surface showings cracks and being partially porous. These shortcomings are overcome via an improved eco-friendly vacuum deposition process, wherein at least one layer of a material, having an outer layer of Al.sub.2 O.sub.3, is applied to the carrier of sintered material at a maximum of 800.degree. C., with this layer being completely crystalline and comprised of an .alpha.Al.sub.2 O.sub..sub.3 phase and possibly of a .gamma.Al.sub.2 O.sub.3 phase with a (440) texture, having a compressive stress of at least 1 GPa and a hardness of at least 20 GPa, with the Al.sub.2 O.sub.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: December 16, 1997
    Assignee: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Klaus Goedicke, Gunter Hotzsch, Fred Fietzke, Olaf Zywitzki, Siegfried Schiller, Jonathan Reschke, Wolfgang Hempel
  • Patent number: 5693417
    Abstract: Vacuum coated compound body and a process for its production. Such compound bodies, when coated in a known manner, have a carrier of a metal or of an alloy, a layer that is thermally, mechanically and chemically unstable, with their surface showing cracks and being partially porous. These shortcomings are overcome via an improved eco-friendly vacuum deposition process wherein at least one layer of a material having an outer layer is of Al.sub.2 O.sub.3, is applied to the metal or alloy carrier at a maximum of 700.degree. C., with this layer being completely crystalline and comprised of an .alpha.Al.sub.2 O.sub.3 phase and possibly of a .gamma.Al.sub.2 O.sub.3 phase with a (440) texture, having a compressive stress of at least 1 Gpa and a hardness of at least 20 Gpa, with the Al.sub.2 O.sub.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: December 2, 1997
    Assignee: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Klaus Goedicke, Gunter Hotzsch, Fred Fietzke, Olaf Zywitzki, Siegfried Schiller, Jonathan Reschke, Wolfgang Hempel