Patents by Inventor Fred Fishburn

Fred Fishburn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230146831
    Abstract: A semiconductor manufacturing process for forming a three-dimensional (3D) memory structure and a semiconductor device having a 3D memory structure is described. The 3D memory structure comprises layers of memory cells with L shaped conductive layers where the L shaped conductive layers of each layer are coupled to metal lines disposed above the top or upper most layer such that the memory cells in each layer can be coupled to control circuitry.
    Type: Application
    Filed: September 4, 2022
    Publication date: May 11, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Gill Yong Lee, Fred Fishburn, Tomohiko Kitajima, Sung-Kwan Kang, Sony Varghese
  • Publication number: 20230101155
    Abstract: A memory device architecture, and method of fabricating a three dimensional device are provided. The memory device architecture may include a plurality of memory blocks, arranged in an array, wherein a given memory block comprises: a cell region, the cell region comprising a three-dimensional array of memory cells, arranged in a plurality of n memory cell layers; and a staircase region, the staircase region being disposed adjacent to at least a first side of the cell region, the staircase region comprising a signal line assembly that is coupled to the three-dimensional array of memory cells.
    Type: Application
    Filed: July 19, 2022
    Publication date: March 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Fred Fishburn, Tomohiko Kitajima, Sung-Kwan Kang, Sony Varghese, Gill Yong Lee
  • Publication number: 20220336470
    Abstract: Disclosed are 3-D DRAM devices and methods of forming 3-D DRAM devices. One method may include forming a stack of DRAM device layers, forming a MOS substrate directly atop the stack of alternating DRAM device layers, and forming a trench through the MOS substrate and the stack of DRAM device layers. The method may further include depositing a protection layer over the MOS substrate, wherein the protection layer is deposited at a non-zero angle of inclination relative to a vertical extending from a top surface of the MOS substrate.
    Type: Application
    Filed: June 1, 2022
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sony Varghese, Fred Fishburn
  • Patent number: 11380691
    Abstract: Disclosed are 3-D DRAM devices and methods of forming 3-D DRAM devices. One method may include forming a stack of DRAM device layers, forming a MOS substrate directly atop the stack of alternating DRAM device layers, and forming a trench through the MOS substrate and the stack of DRAM device layers. The method may further include depositing a protection layer over the MOS substrate, wherein the protection layer is deposited at a non-zero angle of inclination relative to a vertical extending from a top surface of the MOS substrate.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: July 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sony Varghese, Fred Fishburn
  • Patent number: 8687426
    Abstract: Multi-semiconductor vertical memory strings, strings of memory cells having individually biasable channel regions, arrays incorporating such strings and methods for forming and accessing such strings are provided. For example non-volatile memory devices are disclosed that utilize NAND strings of serially-connected non-volatile memory cells. One such string can include two or more serially connected non-volatile memory cells each having a channel region. Each memory cell of the two or more serially connected non-volatile memory cells shares a common control gate and each memory cell of the two or more serially connected non-volatile memory cells is configured to receive an individual bias to its channel region.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 1, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Fred Fishburn
  • Publication number: 20140027913
    Abstract: Semiconductor devices have conductive material lining a first opening in an insulative material and in contact with a metal silicide layer at the base of the opening overlying an active area within a silicon material and lining a second opening in the insulative material in direct contact with a polysilicon plug having substantially no metal silicide situated thereon.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Terrence McDaniel, Sandra Tagg, Fred Fishburn
  • Patent number: 8580666
    Abstract: Methods for forming memory devices and integrated circuitry, for example, DRAM (dynamic random access memory) circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 12, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Terrence McDaniel, Sandra Tagg, Fred Fishburn
  • Patent number: 8395941
    Abstract: Multi-semiconductor vertical memory strings, strings of memory cells having individually biasable channel regions, arrays incorporating such strings and methods for forming and accessing such strings are provided. For example non-volatile memory devices are disclosed that utilize NAND strings of serially-connected non-volatile memory cells. One such string can include two or more serially connected non-volatile memory cells each having a channel region. Each memory cell of the two or more serially connected non-volatile memory cells shares a common control gate and each memory cell of the two or more serially connected non-volatile memory cells is configured to receive an individual bias to its channel region.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: March 12, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Fred Fishburn
  • Publication number: 20120025385
    Abstract: Methods for forming memory devices and integrated circuitry, for example, DRAM circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided.
    Type: Application
    Filed: September 27, 2011
    Publication date: February 2, 2012
    Inventors: Terrence McDaniel, Sandra Tagg, Fred Fishburn
  • Publication number: 20110280077
    Abstract: Multi-semiconductor vertical memory strings, strings of memory cells having individually biasable channel regions, arrays incorporating such strings and methods for forming and accessing such strings are provided. For example non-volatile memory devices are disclosed that utilize NAND strings of serially-connected non-volatile memory cells. One such string can include two or more serially connected non-volatile memory cells each having a channel region. Each memory cell of the two or more serially connected non-volatile memory cells shares a common control gate and each memory cell of the two or more serially connected non-volatile memory cells is configured to receive an individual bias to its channel region.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Inventor: Fred Fishburn
  • Patent number: 8026542
    Abstract: Methods for forming memory devices and integrated circuitry, for example, DRAM circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: September 27, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Terrence McDaniel, Sandra Tagg, Fred Fishburn
  • Publication number: 20100266962
    Abstract: A method of forming a plurality of capacitors includes forming a plurality of individual capacitor electrodes using two masking steps. An earlier of the two masking steps is used to form an array of first openings over a plurality of storage node contacts. A later of the two masking steps is used to form an array of second openings received partially over and partially offset from the array of first openings. Overlapping portions of the first and second openings are received over the storage node contacts. After both of the two masking steps, conductive material of the individual capacitor electrodes is deposited into the overlapping portions of each of the first and second openings. The individual capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 21, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fred Fishburn
  • Patent number: 7759193
    Abstract: A method of forming a plurality of capacitors includes forming a plurality of individual capacitor electrodes using two masking steps. An earlier of the two masking steps is used to form an array of first openings over a plurality of storage node contacts. A later of the two masking steps is used to form an array of second openings received partially over and partially offset from the array of first openings. Overlapping portions of the first and second openings are received over the storage node contacts. After both of the two masking steps, conductive material of the individual capacitor electrodes is deposited into the overlapping portions of each of the first and second openings. The individual capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Fred Fishburn
  • Publication number: 20100009512
    Abstract: A method of forming a plurality of capacitors includes forming a plurality of individual capacitor electrodes using two masking steps. An earlier of the two masking steps is used to form an array of first openings over a plurality of storage node contacts. A later of the two masking steps is used to form an array of second openings received partially over and partially offset from the array of first openings. Overlapping portions of the first and second openings are received over the storage node contacts. After both of the two masking steps, conductive material of the individual capacitor electrodes is deposited into the overlapping portions of each of the first and second openings. The individual capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Inventor: Fred Fishburn
  • Patent number: 7605033
    Abstract: Methods for forming memory devices and integrated circuitry, for example, DRAM circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided. In some embodiments, the method includes forming a metallized contact to an active area in a silicon substrate in a peripheral circuitry area and a metallized contact to a polysilicon plug in a memory cell array area by forming a first opening to expose the active area at the peripheral circuitry area, chemical vapor depositing a titanium layer over the dielectric layer and into the first opening to form a titanium silicide layer over the active area in the silicon substrate, removing the titanium layer selective to the titanium silicide layer, forming a second opening in the dielectric layer to expose the polysilicon plug at the memory cell array area, and forming metal contacts within the first and second openings to the active area and the exposed polysilicon plug.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: October 20, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Terrence McDaniel, Sandra Tagg, Fred Fishburn
  • Patent number: 7569453
    Abstract: This invention relates to contact structures for use in integrated circuits and methods of fabricating contact structures. In one embodiment, a contact structure includes a conductive layer, one or more barrier layers formed above the conductive layer, and a barrier structure encircling the polysilicon layer and the one or more barrier layers. In an alternate embodiment, a contact structure is fabricated by forming a polysilicon layer on a substrate, forming a tungsten nitride layer above the polysilicon layer, and etching the polysilicon layer and the tungsten nitride layer to a level below the surface of a substrate structure. A silicon nitride layer is formed above the tungsten nitride layer, and a ruthenium silicide layer is formed above the silicon nitride layer. The ruthenium silicide layer is then polished.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: August 4, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Fred Fishburn
  • Patent number: 7473644
    Abstract: Methods for forming accurate, symmetric cross-section spacers of hardmask material on a substrate such as a silicon wafer or quartz substrate, for formation of precise subresolution features useful for forming integrated circuits. The resulting symmetrical hardmask spacers with their symmetric upper portions may be used to accurately etch well-defined, high aspect ratio features in the underlying substrate. Some disclosed methods also enable simultaneous formation of hardmask structures of various dimensions, of both conventional and subresolution size, to enable etching structural features of different sizes in the underlying substrate.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: January 6, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Richard H. Lane, Fred Fishburn
  • Publication number: 20080113501
    Abstract: The invention includes methods of forming semiconductor constructions in which electrically conductive structures are formed between bitlines to electrically connect with storage node contacts. The bitlines can be formed within trenches having faceted top portions. The invention also includes semiconductor structures containing trenches with faceted top portions, and containing bitlines within the trenches.
    Type: Application
    Filed: January 9, 2008
    Publication date: May 15, 2008
    Inventors: Terrence McDaniel, Scott Southwick, Fred Fishburn
  • Publication number: 20080105913
    Abstract: The invention includes methods of forming semiconductor constructions in which electrically conductive structures are formed between bitlines to electrically connect with storage node contacts. The bitlines can be formed within trenches having faceted top portions. The invention also includes semiconductor structures containing trenches with faceted top portions, and containing bitlines within the trenches.
    Type: Application
    Filed: January 9, 2008
    Publication date: May 8, 2008
    Inventors: Terrence McDaniel, Scott Southwick, Fred Fishburn
  • Publication number: 20080102596
    Abstract: Electroless plating can be utilized to form electrical interconnects associated with semiconductor substrates. For instance, a semiconductor substrate can be formed to have a dummy structure thereover with a surface suitable for electroless plating, and to also have a digit line thereover having about the same height as the dummy structure. A layer can be formed over the dummy structure and digit line, and openings can be formed through the layer to the upper surfaces of the dummy structure and digit line. Subsequently, a conductive material can be electroless plated within the openings to form electrical contacts within the openings. The opening extending to the dummy structure can pass through a capacitor electrode, and accordingly the conductive material formed within such opening can be utilized to form electrical contact to the capacitor electrode.
    Type: Application
    Filed: January 2, 2008
    Publication date: May 1, 2008
    Inventors: Nishant Sinha, Dinesh Chopra, Fred Fishburn