Patents by Inventor Fred Harris

Fred Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906620
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system includes transmitters configured to transmit radio signals, receivers configured to receive radar signals, and a control unit. The received radio signals include transmitted radio signals transmitted by the transmitters and reflected from objects in an environment. The control unit adaptively controls the transmitters and the receivers based on a selected operating mode for the radar system. The selected operating mode meets a desired operational objective defined by current environmental conditions. The control unit is configured to control the receivers to produce and process data according to the selected operating mode.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: February 20, 2024
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 11867828
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: January 9, 2024
    Assignee: Uhnder, Inc.
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Patent number: 11849283
    Abstract: A method and system or device such as a hearing aid are provided for processing audio signals. In accordance with the method, an audio signal is received and divided into a plurality of frequency sub-bands. For each of the frequency sub-band signals, the signal is further divided into overlapping temporal frames. Each of the temporal frames are windowed. Frequency warping is performed on each of the windowed frames. Overlap-and-add is performed on the frequency warped frames. The frequency warped sub-bands are combined into a full band to provide a frequency warped signal.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: December 19, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Harinath Garudadri, Ching-Hua Lee, Kuan-Lin Chen, Fred Harris, Bhaskar Rao
  • Patent number: 11821981
    Abstract: A method for operating a radar sensing system includes configuring a transmitter to transmit a radio signal. A receiver is configured to receive radio signals. The received radio signals include the transmitted radio signal transmitted by the transmitter and reflected from objects in the environment. The method includes with advanced temporal knowledge of the codes used to modulate the transmitted radio signal, using code values of the plurality of codes, and in combination with a bank of digital finite impulse response (FIR) filters, generating complementary signals of any self-interference noise. The method further includes subtracting the complementary signals at one or more points in the receiver prior to the interference desensing the receiver. The radar sensing system further includes a frequency modulated continuous wave (FMCW) interference canceller for detecting the largest interference signals and sequentially cancelling them while signal processing the received radio signals.
    Type: Grant
    Filed: March 28, 2023
    Date of Patent: November 21, 2023
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20230243964
    Abstract: A method for operating a radar sensing system includes configuring a transmitter to transmit a radio signal. A receiver is configured to receive radio signals. The received radio signals include the transmitted radio signal transmitted by the transmitter and reflected from objects in the environment. The method includes with advanced temporal knowledge of the codes used to modulate the transmitted radio signal, using code values of the plurality of codes, and in combination with a bank of digital finite impulse response (FIR) filters, generating complementary signals of any self-interference noise. The method further includes subtracting the complementary signals at one or more points in the receiver prior to the interference desensing the receiver. The radar sensing system further includes a frequency modulated continuous wave (FMCW) interference canceller for detecting the largest interference signals and sequentially cancelling them while signal processing the received radio signals.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 3, 2023
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 11614538
    Abstract: A radar sensing system including transmit antennas and receive antennas, transmitters, receivers, and a controller. The system further includes a transmit antenna switch selectively coupling each of the transmitters to a respective transmit antenna, and a receive antenna switch selectively coupling at least one receiver of the receivers to respective receive antennas. A quantity of receivers is different from a quantity of the receive antennas. The controller is operable to select a quantity of receivers to be coupled to receive antennas to realize a desired quantity of virtual receivers. The controller is operable to select an antenna pattern as defined by the selected quantity of receivers coupled to receive antennas.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: March 28, 2023
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20220360911
    Abstract: A method and system or device such as a hearing aid are provided for processing audio signals. In accordance with the method, an audio signal is received and divided into a plurality of frequency sub-bands. For each of the frequency sub-band signals, the signal is further divided into overlapping temporal frames. Each of the temporal frames are windowed. Frequency warping is performed on each of the windowed frames. Overlap-and-add is performed on the frequency warped frames. The frequency warped sub-bands are combined into a full band to provide a frequency warped signal.
    Type: Application
    Filed: September 16, 2020
    Publication date: November 10, 2022
    Inventors: Harinath GARUDADRI, Ching-Hua LEE, Kuan-Lin CHEN, Fred HARRIS, Bhaskar RAO
  • Publication number: 20220350020
    Abstract: A radar sensing system including transmit antennas and receive antennas, transmitters, receivers, and a controller. The system further includes a transmit antenna switch selectively coupling each of the transmitters to a respective transmit antenna, and a receive antenna switch selectively coupling at least one receiver of the receivers to respective receive antennas. A quantity of receivers is different from a quantity of the receive antennas. The controller is operable to select a quantity of receivers to be coupled to receive antennas to realize a desired quantity of virtual receivers. The controller is operable to select an antenna pattern as defined by the selected quantity of receivers coupled to receive antennas.
    Type: Application
    Filed: March 1, 2022
    Publication date: November 3, 2022
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 11262448
    Abstract: A radar system has different modes of operation. In a method for operating the radar system, at least one of one or more transmitters are configured to transmit modulated continuous-wave radio signals, while at least one of one or more receivers are configured to receive radio signals. The received radio signals include the transmitted radio signals transmitted by the one or more transmitters and reflected from objects in the environment. The method further includes selectively modifying an operational parameter of at least one of the transmitters or at least one of the receivers. The selected operational parameter is modified to meet changing operational requirements of the radar sensing system.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: March 1, 2022
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20220003614
    Abstract: A device for measuring the temperature of a lower extremity of a subject in need of such monitoring. The device is especially suited for monitoring the foot temperature of a subject with diabetes or another condition that could lead to lower blood circulation and temperature in the lower extremities of the subject. Methods of preventing complications from such diseases, disorders, syndromes, or conditions are provided. The past recorded temperatures of the subject may be stored for comparisons and trends analyses.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 6, 2022
    Applicant: Jackson State University
    Inventors: Jordan Barber, Chevan Baker, Fred Harris, Jann Butler, Gordon Skelton
  • Publication number: 20210389414
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 16, 2021
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Publication number: 20210364634
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system includes transmitters configured to transmit radio signals, receivers configured to receive radar signals, and a control unit. The received radio signals include transmitted radio signals transmitted by the transmitters and reflected from objects in an environment. The control unit adaptively controls the transmitters and the receivers based on a selected operating mode for the radar system. The selected operating mode meets a desired operational objective defined by current environmental conditions. The control unit is configured to control the receivers to produce and process data according to the selected operating mode.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 11105890
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 31, 2021
    Assignee: Uhnder, Inc.
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Patent number: 11086010
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements. The system also adapts to changing environmental conditions including interfering radio signals.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 10, 2021
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 10976431
    Abstract: A radar sensing system for a vehicle includes a transmitter and a receiver. The transmitter is configured for installation and use on a vehicle. The transmitter is configured to transmit radio signals. The receiver is configured for installation and use on the vehicle. The receiver is configured to receive radio signals that include (i) the transmitted radio signals transmitted by the transmitter and reflected from objects in an environment, and (ii) other radio signals that include radio signals transmitted by at least one other radar sensing system. The receiver is configured to filter frequency modulated continuous wave (FMCW) radio signals from the received radio signals to produce filtered radio signals. The receiver is further configured to select between (i) the filtered radio signals, and (ii) the received radio signals before filtering. The filtered radio signals are selected when the other radio signals include FMCW radio signals.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: April 13, 2021
    Assignee: Uhnder, Inc.
    Inventors: Fred Harris, David Trager, Curtis Davis, Raghunath K. Rao
  • Publication number: 20190271776
    Abstract: A radar system has different modes of operation. In a method for operating the radar system, at least one of one or more transmitters are configured to transmit modulated continuous-wave radio signals, while at least one of one or more receivers are configured to receive radio signals. The received radio signals include the transmitted radio signals transmitted by the one or more transmitters and reflected from objects in the environment. The method further includes selectively modifying an operational parameter of at least one of the transmitters or at least one of the receivers. The selected operational parameter is modified to meet changing operational requirements of the radar sensing system.
    Type: Application
    Filed: April 15, 2019
    Publication date: September 5, 2019
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20190187246
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Patent number: 10261179
    Abstract: A radar system has different modes of operation. In one mode, the radar operates as a single-input, multiple output (SIMO) radar system utilizing one transmitted signal from one antenna at a time. Codes with known excellent autocorrelation properties are utilized in this mode. At each receiver the response after correlating with various possible transmitted signals is measured in order to estimate the interference that each transmitter will represent at each receiver. The estimated effect of the interference from one transmitter to a receiver that correlates with a different code is used to mitigate the interference. In another mode, the radar operates as a multi-input, multiple-output (MIMO) radar system utilizing all the antennas at a time. Interference cancellation of the nonideal cross-correlation sidelobes when transmitting in the MIMO mode are employed to remove ghost targets due to unwanted sidelobes.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 16, 2019
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20190094353
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements. The system also adapts to changing environmental conditions including interfering radio signals.
    Type: Application
    Filed: December 3, 2018
    Publication date: March 28, 2019
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 10145954
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 4, 2018
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali