Patents by Inventor Frederic D. Hook

Frederic D. Hook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11635476
    Abstract: A mobile robot includes a body movable over a surface within an environment, a calibration coil carried on the body and configured to produce a calibration magnetic field, a sensor circuit carried on the body and responsive to the calibration magnetic field, and a controller carried on the body and in communication with the sensor circuit. The sensor circuit is configured to generate calibration signals based on the calibration magnetic field. The controller is configured to calibrate the sensor circuit as a function of the calibration signals, thereby resulting in a calibrated sensor circuit configured to detect a transmitter magnetic field within the environment and to generate detection signals based on the transmitter magnetic field. The controller is configured to estimate a pose of the mobile robot as a function of the detection signals.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: April 25, 2023
    Assignee: iRobot Corporation
    Inventors: Alexander D. Kleiner, Nikolai Romanov, Frederic D. Hook
  • Patent number: 11320835
    Abstract: An autonomous mobile robot includes a drive system to maneuver the autonomous mobile robot about an environment, a first magnetic field antenna system responsive to a magnetic field pulse to generate a first signal, and a second magnetic field antenna system responsive to the magnetic field pulse to generate a second signal. The magnetic field pulse is emitted by a magnetic field emitter system in the environment. The autonomous mobile robot further includes a controller to execute instructions to perform operations including reorienting the autonomous mobile robot based on the first signal and the second signal.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: May 3, 2022
    Assignee: iRobot Corporation
    Inventors: Frederic D. Hook, Nikolai Romanov, Matthew Mercaldo, Peter Teulings, Kenneth Holm, Jr., Juan Oxoby
  • Patent number: 11110595
    Abstract: An autonomous mobile robot includes a flexible member including a polymer layer extending along an entire length of the flexible member, and an end portion vertically movable away from a body of the robot. A first portion of a fastening mechanism extends along a first lateral edge of the polymer layer and a second portion of the fastening mechanism extends along a second lateral edge of the polymer layer. The first portion of the fastening mechanism is attached to the second portion of the fastening mechanism and forms a conduit to support the image capture device. The conduit includes an inner surface and an outer surface, and the outer surface of the conduit is at least partially defined by the polymer layer. An image capture device is mounted to an end portion of the flexible member.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 7, 2021
    Assignee: iRobot Corporation
    Inventors: Patrick Chow, Irene Lee, Kenneth Holm, Jr., Frederic D. Hook, Patrick Petrossian, Fred Alibozek
  • Publication number: 20200180142
    Abstract: An autonomous mobile robot includes a flexible member including a polymer layer extending along an entire length of the flexible member, and an end portion vertically movable away from a body of the robot. A first portion of a fastening mechanism extends along a first lateral edge of the polymer layer and a second portion of the fastening mechanism extends along a second lateral edge of the polymer layer. The first portion of the fastening mechanism is attached to the second portion of the fastening mechanism and forms a conduit to support the image capture device. The conduit includes an inner surface and an outer surface, and the outer surface of the conduit is at least partially defined by the polymer layer. An image capture device is mounted to an end portion of the flexible member.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Inventors: Patrick Chow, Irene Lee, Kenneth Holm, JR., Frederic D. Hook, Patrick Petrossian, Fred Alibozek
  • Publication number: 20200183413
    Abstract: An autonomous mobile robot includes a drive system to maneuver the autonomous mobile robot about an environment, a first magnetic field antenna system responsive to a magnetic field pulse to generate a first signal, and a second magnetic field antenna system responsive to the magnetic field pulse to generate a second signal. The magnetic field pulse is emitted by a magnetic field emitter system in the environment. The autonomous mobile robot further includes a controller to execute instructions to perform operations including reorienting the autonomous mobile robot based on the first signal and the second signal.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Frederic D. Hook, Nikolai Romanov, Matthew Mercaldo, Peter Teulings, Kenneth Holm, JR., Juan Oxoby
  • Publication number: 20190383887
    Abstract: A mobile robot includes a body movable over a surface within an environment, a calibration coil carried on the body and configured to produce a calibration magnetic field, a sensor circuit carried on the body and responsive to the calibration magnetic field, and a controller carried on the body and in communication with the sensor circuit. The sensor circuit is configured to generate calibration signals based on the calibration magnetic field. The controller is configured to calibrate the sensor circuit as a function of the calibration signals, thereby resulting in a calibrated sensor circuit configured to detect a transmitter magnetic field within the environment and to generate detection signals based on the transmitter magnetic field. The controller is configured to estimate a pose of the mobile robot as a function of the detection signals.
    Type: Application
    Filed: August 12, 2019
    Publication date: December 19, 2019
    Inventors: Alexander D. Kleiner, Nikolai Romanov, Frederic D. Hook
  • Patent number: 10429851
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: October 1, 2019
    Assignee: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Dhiraj Goel, Frederic D. Hook, Mario E. Munich
  • Patent number: 10379172
    Abstract: A mobile robot includes a body movable over a surface within an environment, a calibration coil carried on the body and configured to produce a calibration magnetic field, a sensor circuit carried on the body and responsive to the calibration magnetic field, and a controller carried on the body and in communication with the sensor circuit. The sensor circuit is configured to generate calibration signals based on the calibration magnetic field. The controller is configured to calibrate the sensor circuit as a function of the calibration signals, thereby resulting in a calibrated sensor circuit configured to detect a transmitter magnetic field within the environment and to generate detection signals based on the transmitter magnetic field. The controller is configured to estimate a pose of the mobile robot as a function of the detection signals.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: August 13, 2019
    Assignee: iRobot Corporation
    Inventors: Alexander D. Kleiner, Nikolai Romanov, Frederic D. Hook
  • Publication number: 20170031366
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Application
    Filed: August 23, 2016
    Publication date: February 2, 2017
    Applicant: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Dhiraj Goel, Frederic D. Hook, Mario E. Munich
  • Publication number: 20160377688
    Abstract: A mobile robot includes a body movable over a surface within an environment, a calibration coil carried on the body and configured to produce a calibration magnetic field, a sensor circuit carried on the body and responsive to the calibration magnetic field, and a controller carried on the body and in communication with the sensor circuit. The sensor circuit is configured to generate calibration signals based on the calibration magnetic field. The controller is configured to calibrate the sensor circuit as a function of the calibration signals, thereby resulting in a calibrated sensor circuit configured to detect a transmitter magnetic field within the environment and to generate detection signals based on the transmitter magnetic field. The controller is configured to estimate a pose of the mobile robot as a function of the detection signals.
    Type: Application
    Filed: July 14, 2015
    Publication date: December 29, 2016
    Inventors: Alexander D. Kleiner, Nikolai Romanov, Frederic D. Hook
  • Patent number: 9442488
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: September 13, 2016
    Assignee: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Dhiraj Goel, Frederic D. Hook, Mario E. Munich
  • Publication number: 20140257622
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 11, 2014
    Applicant: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Dhiraj Goel, Frederic D. Hook, Mario E. Munich
  • Patent number: 5708363
    Abstract: A liquid conductivity measurement system is disclosed that accurately measures a liquid's conductivity over a range spanning at least several orders of magnitude using just a single sensor, but minimizing the adverse effects of capacitive and other non-linear factors on the conductivity measurement. The system includes a sensor having two spaced-apart electrodes immersed in the liquid and a drive signal source that applies to the sensor an ac electrical signal having a selected frequency and predetermined magnitude. A voltage detector monitors a sensor voltage signal across the sensor's two electrodes and produces a measurement of the liquid's conductivity. The drive signal source is configured to iteratively adjust the frequency of the ac electrical signal based on the sensor voltage signal, to optimize the liquid's conductivity measurement.
    Type: Grant
    Filed: October 16, 1995
    Date of Patent: January 13, 1998
    Assignee: Signet Scientific Company
    Inventors: Ronald J. Yates, Martin M. Munzer, Frederic D. Hook