Patents by Inventor Frederic H. Moll

Frederic H. Moll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7976539
    Abstract: A method for modifying a geometry of a collagenous tissue mass includes heating the collagenous tissue mass to a temperature sufficient to cause denaturation, and introducing a biocompatible fixative, such as genepin, into the collagenous tissue mass.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: July 12, 2011
    Assignee: Hansen Medical, Inc.
    Inventors: Edwin J. Hlavka, Frederic H. Moll, Robert G. Younge, Daniel T. Wallace
  • Patent number: 7974681
    Abstract: A robotic catheter system includes a controller with a master input device, and an instrument driver in communication with the controller, the instrument driver configured for independently controlling each of number of desired motions of a flexible, elongate guide instrument in a body of a patient in response to control signals generated by the controller, the desired motions selected from the group comprising axial advancement, axial retraction, axial rotation, and radial bending. Integrated haptics capability may be provided, in which one or more motors provide tactile feedback to an operator through the master input device.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: July 5, 2011
    Assignee: Hansen Medical, Inc.
    Inventors: Daniel T. Wallace, Robert G. Younge, Michael R. Zinn, Federico Barbagli, David F. Moore, Gregory J. Stahler, Daniel T. Adams, Frederic H. Moll, Kenneth M. Martin, Gunter D. Niemeyer
  • Patent number: 7972298
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: July 5, 2011
    Assignee: Hansen Medical, Inc.
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Publication number: 20110160724
    Abstract: A method for modifying a geometry of a collagenous tissue mass includes heating the collagenous tissue mass to a temperature sufficient to cause denaturation, and introducing a biocompatible fixative, such as genepin, into the collagenous tissue mass.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Applicant: HANSEN MEDICAL, INC.
    Inventors: Edwin J. HLAVKA, Frederic H. MOLL, Robert G. YOUNGE, Daniel T. WALLACE
  • Patent number: 7963288
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: June 21, 2011
    Assignee: Hansen Medical, Inc.
    Inventors: Craig R. Rosenberg, David F. Moore, Randall L. Schlesinger, Frederic H. Moll, Daniel T. Wallace
  • Publication number: 20110137322
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Applicant: Intuitive Surgical Operations
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Patent number: 7922688
    Abstract: Automated systems and methods for delivery of a therapeutic or cosmetic substance into cutaneous, subcutaneous or intramuscular tissue, wherein an automated (e.g., robotic) arm is maneuvered to position a delivery device proximate a targeted location (e.g., an existing hair follicle, a location for implanting a skin filler, or a location for intradermal tattoo ink injection) on a patient's skin surface; and a substantially automated process is used to cause the delivery device to puncture the skin surface and penetrate to a desired depth into the tissue at the targeted location, and deliver the substance therein.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: April 12, 2011
    Assignee: Restoration Robotics, Inc.
    Inventors: Mohan Bodduluri, Miguel G. Canales, James W. McCollum, Philip L. Gildenberg, Douglas E. Kelly, Jeffrey Bird, Frederic H. Moll
  • Patent number: 7865266
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 4, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Patent number: 7850642
    Abstract: A methods using a robotic catheter system to perform a procedure on a patient includes generating a control signal corresponding to movement of a master input device, and moving a plurality of drive elements of an instrument driver in response to the control signal, the drive elements operatively coupled to a corresponding plurality of control elements of an elongate guide instrument, the control elements secured to a distal end of the guide instrument and moveable axially relative to the guide instrument such that movement of the drive elements causes a corresponding movement of the guide instrument distal end.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: December 14, 2010
    Assignee: Hansen Medical, Inc.
    Inventors: Frederic H. Moll, Daniel T. Wallace, Robert G. Younge, David F. Moore, Michael R. Zinn, Kenneth M. Martin, Gunter D. Niemeyer
  • Publication number: 20100308195
    Abstract: A support assembly for supporting a remotely-controlled instrument driver, including a first member, a second member for supporting the instrument driver, and an interface assembly for allowing the second member to rotate relative to the first member about a first axis, and for allowing the second member to rotate relative to the first member about a second axis that forms an angle relative to the first axis, wherein the interface assembly comprises a ball that is rotatable relative to the first member, and a shaft extending through the ball, the shaft configured for coupling to the second member.
    Type: Application
    Filed: August 18, 2010
    Publication date: December 9, 2010
    Applicant: HANSEN MEDICAL, INC.
    Inventors: Alan Lau Yu, Daniel T. Adams, Frederic H. Moll
  • Publication number: 20100234857
    Abstract: A medical robotic system has a surgeon console which is operatively couplable to a patient side unit for performing medical procedures or operatively couplable to a simulator unit for training purposes. The surgeon console has a monitor, input devices and foot pedals. The patient side unit has robotic arm assemblies coupled to instruments and an endoscope. When the surgeon console is coupled to the patient side unit, the instruments move in response to movement of the input devices to perform a medical procedure while captured images of the instruments are displayed on the monitor. When the surgeon console is coupled to the simulator unit, virtual instruments move in response to movement of the input devices to perform a user selected virtual procedure while virtual images of the virtual instruments are displayed on the monitor.
    Type: Application
    Filed: April 7, 2010
    Publication date: September 16, 2010
    Applicant: Intuitve Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Stephen J. Blumenkranz, Brian E. Miller, Frederic H. Moll, Andris D. Ramans, David J. Rosa
  • Patent number: 7789874
    Abstract: A support assembly for supporting a remotely controlled instrument driver in a selectable orientation relative to an operating table, the assembly comprising including a base removably attachable to the operating table, an actuator assembly coupled to the base, the actuator assembly including an actuator and a brake that is electronically activated to allow rotation of a first extension member about a first axis substantially orthogonal to the operating table. A second extension member is coupled to the first extension member via an interface assembly operatively controlled by the actuator to selectively allow rotation of the second extension member about a second axis substantially parallel to the first axis, and about a third axis substantially orthogonal to the first axis.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 7, 2010
    Assignee: Hansen Medical, Inc.
    Inventors: Alan Lau Yu, Daniel T. Adams, Frederic H. Moll
  • Publication number: 20100198215
    Abstract: Surgical accessories are presented in vivo and used by surgical tools in the surgical site to perform additional tasks without the need to remove the tools from the surgical site for tool change or instrument loading. Examples of in vivo accessories include fastening accessories such as surgical clips for use with a clip applier, single working member accessories such as a blade which can be grasped and manipulated by a grasping tool for cutting, sheath accessories that fit over working members of a tool, flow tubes for providing suction or introducing a fluid into the surgical site, and a retraction member resiliently biased to retract a tissue to expose an area in the surgical site for treatment. The accessories can be introduced into the surgical site by a dedicated accessory introducer, or can be supported on the body of a surgical tool inserted into the surgical site and be manipulated using another surgical tool in the surgical site.
    Type: Application
    Filed: March 18, 2010
    Publication date: August 5, 2010
    Applicant: Intuitive Surgical, Inc.
    Inventors: Christopher A. Julian, Daniel T. Wallace, Frederic H. Moll, Dean F. Hoornaert, David J. Rosa, John G. Freund, John W. Hill
  • Patent number: 7766823
    Abstract: A method of providing access to tissue for a surgical instrument through a body wall is provided. The method includes providing an expandable retractor having a flexible sheath, the retractor being in a collapsed state; introducing the retractor into the body and placing the retractor adjacent the tissue; expanding the retractor; deploying the flexible sheath by engaging the flexible sheath with a tool and driving the flexible sheath through the body wall with the tool; and inserting the surgical instrument from outside the body through the flexible sheath to provide access to the tissue by the surgical instrument.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: August 3, 2010
    Assignee: Covidien AG
    Inventors: Frederic H. Moll, Charles Gresl, Jr., Albert K. Chin, Philip K. Hopper
  • Publication number: 20100174149
    Abstract: A method of providing access to tissue for a surgical instrument through a body wall is provided. The method includes providing an expandable retractor having a flexible sheath, the retractor being in a collapsed state; introducing the retractor into the body and placing the retractor adjacent the tissue; expanding the retractor; deploying the flexible sheath by engaging the flexible sheath with a tool and driving the flexible sheath through the body wall with the tool; and inserting the surgical instrument from outside the body through the flexible sheath to provide access to the tissue by the surgical instrument.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 8, 2010
    Inventors: Frederic H. Moll, Charles Gresl, JR., Albert K. Chin, Philip K. Hopper
  • Publication number: 20090062602
    Abstract: A flexible spine for use in one or more surgical instruments including a catheter and/or sheath of a robotic instrument system. The spine includes an elongate body that defines a central lumen and that is a unitary structure having a plurality of discrete sections, each of which has a distinguishing structural attribute that differentiates it from the other sections. Such distinguishing structural attributes may include, without limitation, materials, material attributes, shapes, sizes and/or attributes related to apertures in a wall of the elongate body, such as a number, shape, size, spacing and degree of overlap of such apertures. The arrangement of discrete, structurally different sections results in varying flexibility of the elongate spine and of corresponding sections of a surgical instrument incorporating the spine.
    Type: Application
    Filed: July 30, 2008
    Publication date: March 5, 2009
    Applicant: Hansen Medical, Inc.
    Inventors: Craig R. Rosenberg, Jeffrey B. Alvarez, Frederic H. Moll, Daniel T. Wallace, Jason K. Chan
  • Publication number: 20090036900
    Abstract: Various methods for performing various surgical procedures using a robotic instrument system are disclosed. In one embodiment, the method comprises advancing a guide instrument into a patient's body and to the vicinity of a treatment area. The guide instrument may be a robotically controlled catheter which is controlled by a robotic catheter system. The guide instrument comprises an elongate flexible body having a proximal end and a distal end, and an end effector coupled to the distal end. The end effector may comprise various devices for assisting and performing the surgical procedure. For example, the end effector may be a clip applier, a laser fiber, a cryo fiber, or a needle and grasper. An image capture device may also be coupled to the distal end to assist in positioning and operating the guide instrument.
    Type: Application
    Filed: February 1, 2008
    Publication date: February 5, 2009
    Applicant: Hansen Medical, Inc.
    Inventor: Frederic H. Moll
  • Publication number: 20080218770
    Abstract: A positionable medical instrument assembly, e.g., a robotic instrument driver configured to maneuver an elongate medical instrument, includes a first member coupled to a second member by a movable joint, with a Bragg fiber sensor coupled to the first and second members, such that relative movement of the first and second members about the movable joint causes a bending of at least a portion of the Bragg fiber sensor. The Bragg fiber sensor has a proximal end operatively coupled to a controller configured to receive signals from the Bragg fiber sensor indicative of a bending thereof, the controller configured to analyze the signals to determine a relative position of the first and second members about the movable joint.
    Type: Application
    Filed: February 1, 2008
    Publication date: September 11, 2008
    Applicant: Hansen Medical, Inc.
    Inventors: Frederic H. Moll, Randall L. Schlesinger
  • Publication number: 20080195081
    Abstract: Methods of performing various minimally invasive spinal surgical applications with a flexible, robotically controlled catheter instrument are disclosed. In one embodiment, a surgical method comprises inserting a robotically controlled, flexible catheter instrument through the sacral hiatus and into the epidural space of the spine, and advancing the catheter instrument toward the lumbar spine, to an area of the spine to be treated. The catheter instrument is then used to perform a therapeutic procedure on the spine, such as (without limitation), the delivery of a spinal stabilization device, or performing a lumbar discectomy, laminectomy, forminotomy, kyphoplasty, or spineoplasty.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 14, 2008
    Applicant: Hansen Medical, Inc.
    Inventor: Frederic H. Moll
  • Publication number: 20080167674
    Abstract: Automated systems and methods for delivery of a therapeutic or cosmetic substance into cutaneous, subcutaneous or intramuscular tissue, wherein an automated (e.g., robotic) arm is maneuvered to position a delivery device proximate a targeted location (e.g., an existing hair follicle, a location for implanting a skin filler, or a location for intradermal tattoo ink injection) on a patient's skin surface; and a substantially automated process is used to cause the delivery device to puncture the skin surface and penetrate to a desired depth into the tissue at the targeted location, and deliver the substance therein.
    Type: Application
    Filed: January 8, 2007
    Publication date: July 10, 2008
    Applicant: Restoration Robotics, Inc.
    Inventors: Mohan Bodduluri, Miguel G. Canales, James W. McCollum, Philip L. Gildenberg, Douglas E. Kelly, Jeffrey Bird, Frederic H. Moll