Patents by Inventor Frederick E. Becker

Frederick E. Becker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10526964
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gearbox, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: January 7, 2020
    Assignee: Concepts NREC, LLC
    Inventors: Frederick E. Becker, Francis A. DiBella, Alexander Gofer, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Publication number: 20160222970
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gearbox, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Application
    Filed: April 8, 2016
    Publication date: August 4, 2016
    Inventors: Frederick E. Becker, Francis A. DiBella, Alexander Gofer, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Patent number: 9316228
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gearbox, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: April 19, 2016
    Assignee: Concepts NREC, LLC
    Inventors: Frederick E. Becker, Jamin J. Bitter, Francis A. DiBella, Alexander Gofer, Robert J. Pelton, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Publication number: 20150322811
    Abstract: A turbine-generator device for use in electricity generation using heat from industrial processes, renewable energy sources and other sources. The generator may be cooled by introducing into the gap between the rotor and stator liquid that is vaporized or atomized prior to introduction, which liquid is condensed from gases exhausted from the turbine. The turbine has a universal design and so may be relatively easily modified for use in connection with generators having a rated power output in the range of 50 KW to 5 MW. Such modifications are achieved, in part, through use of a modular turbine cartridge built up of discrete rotor and stator plates sized for the desired application with turbine brush seals chosen to accommodate radial rotor movements from the supported generator. The cartridge may be installed and removed from the turbine relatively easily for maintenance or rebuilding. The rotor housing is designed to be relatively easily machined to dimensions that meet desired operating parameters.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 12, 2015
    Inventors: Kevin Fairman, Francis A. Di Bella, David Japikse, Frederick E. Becker, Alexander Gofer
  • Patent number: 9083212
    Abstract: A turbine-generator device for use in electricity generation using heat from industrial processes, renewable energy sources and other sources. The generator may be cooled by introducing into the gap between the rotor and stator liquid that is vaporized or atomized prior to introduction, which liquid is condensed from gases exhausted from the turbine. The turbine has a universal design and so may be relatively easily modified for use in connection with generators having a rated power output in the range of 50 KW to 5 MW. Such modifications are achieved, in part, through use of a modular turbine cartridge built up of discrete rotor and stator plates sized for the desired application with turbine brush seals chosen to accommodate radial rotor movements from the supported generator. The cartridge may be installed and removed from the turbine relatively easily for maintenance or rebuilding. The rotor housing is designed to be relatively easily machined to dimensions that meet desired operating parameters.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: July 14, 2015
    Assignee: Concepts ETI, Inc.
    Inventors: Kevin Fairman, Francis A. Di Bella, David Japikse, Frederick E. Becker, Alexander Gofer
  • Publication number: 20150135696
    Abstract: An axial-flow turbine assembly that includes one or more features for enhancing the efficiency of the turbine's operation. In one embodiment, the turbine assembly includes a turbine rotor having blades that adjust their pitch angle in direct response to working fluid pressure on the blades themselves or other part(s) of the rotor. In other embodiments, the turbine assembly is deployable in an application, such as an oscillating water column system, in which the flow of working fluid varies over time, for example, as pressure driving the flow changes. In a first of these embodiments, the turbine assembly includes a valve that allows the pressure to build so that the flow is optimized for the turbine's operating parameters. In a second of these embodiments, one or more variable-admission nozzle and shutter assemblies are provided to control the flow through the turbine to optimize the flow relative to the turbine's operating parameters.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 21, 2015
    Inventors: Frederick E. Becker, Francis A. DiBella, Kevin D. Fairman, Alexander Gofer
  • Publication number: 20150121868
    Abstract: In a geothermal power system that includes a turbine generator, a down-hole heat exchanger, and a turbine pump assembly, various arrangements for the turbine pump assembly are described. Those arrangements address considerations related to the design of the down-hole turbine pump. In such a system, the turbine generator receives a high pressure working fluid from the down-hole system to drive a generator. The turbine generator is in fluid communication with the down-hole heat exchanger and with the turbine portion of a removably disposed down-hole turbine pump assembly. The pump portion of the down-hole turbine pump assembly is in fluid communication with the down-hole heat exchanger and a source of geothermal fluid.
    Type: Application
    Filed: October 19, 2012
    Publication date: May 7, 2015
    Applicant: GEOTEK ENERGY, LLC
    Inventors: Kenneth W. Fryrear, Michael Pierce, Dave Marshall, Frederick E. Becker, Sharon Wight, Jamin Bitter, Alexander Gofer
  • Patent number: 8974184
    Abstract: An axial-flow turbine assembly that includes one or more features for enhancing the efficiency of the turbine's operation. In one embodiment, the turbine assembly includes a turbine rotor having blades that adjust their pitch angle in direct response to working fluid pressure on the blades themselves or other part(s) of the rotor. In other embodiments, the turbine assembly is deployable in an application, such as an oscillating water column system, in which the flow of working fluid varies over time, for example, as pressure driving the flow changes. In a first of these embodiments, the turbine assembly includes a valve that allows the pressure to build so that the flow is optimized for the turbine's operating parameters. In a second of these embodiments, one or more variable-admission nozzle and shutter assemblies are provided to control the flow through the turbine to optimize the flow relative to the turbine's operating parameters.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 10, 2015
    Assignee: Concepts ETI, Inc.
    Inventors: Frederick E. Becker, Francis A. DiBella, Kevin D. Fairman, Alexander Gofer
  • Publication number: 20150037136
    Abstract: A turbine-generator device for use in electricity generation using heat from industrial processes, renewable energy sources and other sources. The generator may be cooled by introducing into the gap between the rotor and stator liquid that is vaporized or atomized prior to introduction, which liquid is condensed from gases exhausted from the turbine. The turbine has a universal design and so may be relatively easily modified for use in connection with generators having a rated power output in the range of 50 KW to 5 MW. Such modifications are achieved, in part, through use of a modular turbine cartridge built up of discrete rotor and stator plates sized for the desired application with turbine brush seals chosen to accommodate radial rotor movements from the supported generator. The cartridge may be installed and removed from the turbine relatively easily for maintenance or rebuilding. The rotor housing is designed to be relatively easily machined to dimensions that meet desired operating parameters.
    Type: Application
    Filed: July 9, 2013
    Publication date: February 5, 2015
    Inventors: Kevin Fairman, Francis A. Di Bella, David Japikse, Frederick E. Becker, Alexander Gofer
  • Patent number: 8616829
    Abstract: A turbine that allows for the conversion of the kinetic energy of waterway to mechanical power for use in an energy accepting apparatus is described. The turbine has complimentary components that improve the power efficiency of the turbine. The turbine may include a blade shroud and a plurality of blades that are connected to the blade shroud. On the external surface of the blade shroud, a drive mechanism and/or a brake mechanism may be disposed. An inlet nozzle and outlet diffuser may be used in combination with the turbine. The turbine may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: December 31, 2013
    Assignee: Concepts ETI, Inc.
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo
  • Publication number: 20130145753
    Abstract: An axial-flow turbine assembly that includes one or more features for enhancing the efficiency of the turbine's operation. In one embodiment, the turbine assembly includes a turbine rotor having blades that adjust their pitch angle in direct response to working fluid pressure on the blades themselves or other part(s) of the rotor. In other embodiments, the turbine assembly is deployable in an application, such as an oscillating water column system, in which the flow of working fluid varies over time, for example, as pressure driving the flow changes. In a first of these embodiments, the turbine assembly includes a valve that allows the pressure to build so that the flow is optimized for the turbine's operating parameters. In a second of these embodiments, one or more variable-admission nozzle and shutter assemblies are provided to control the flow through the turbine to optimize the flow relative to the turbine's operating parameters.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 13, 2013
    Applicant: Concepts ETI, Inc.
    Inventors: Frederick E. Becker, Francis A. DiBella, Kevin D. Fairman, Alexander Gofer
  • Patent number: 8371801
    Abstract: A system for installing and extracting a flowing water turbine below the surface of the water includes a flow inducer assembly for improving the conversation of the kinetic energy of a waterway to mechanical energy. The flow inducer assembly includes a nozzle that may be shaped as a cowling and a outlet diffuser. The system may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: February 12, 2013
    Assignee: Hydro Green Energy, LLC
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo, Tsukasa Yoshinaka
  • Patent number: 8303242
    Abstract: A hydropower generating turbine having an impeller housing disposed to receive water, at least one impeller disposed within the impeller housing, at least one adjustable duct pivotally connected to the impeller housing, and, where the duct has a plurality of duct leafs, wherein the duct leafs articulate and cause the duct to converge and diverge for selectively disposing a fluid about the impeller. The ducts may be inflow or outflow ducts, and the turbine may react to a change in the fluid and alter the shape of the impeller. Further, the turbine may have an automated controller where variable change in the flow is detected by a sensor and transmitted to the automated controller to cause a directional shift in the multidirectional turbine.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 6, 2012
    Assignee: Hydro Green Energy, LLC
    Inventors: Wayne F. Krouse, Frederick E. Becker, Andrew R. Provo
  • Publication number: 20120011857
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gear-box, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 19, 2012
    Applicant: CONCEPTS ETI, INC.
    Inventors: Frederick E. Becker, Jamin J. Bitter, Francis A. DiBella, Alexander Gofer, Robert J. Pelton, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Patent number: 8072089
    Abstract: A preferred embodiment includes a system for power generation through movement of fluid having a variety of configurations and implementations. One preferred embodiment includes a system for power generation through movement of fluid includes a power generating cell with a generally cylindrical housing a ring for rotating disposed in said housing, one or more impellers fixedly coupled to said ring, and a generator operably coupled to said ring for receiving energy from the one or more impellers in which fluid is disposed about one or more impellers for creating energy.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: December 6, 2011
    Inventors: Wayne F. Krouse, Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo
  • Publication number: 20100119362
    Abstract: A turbine that allows for the conversion of the kinetic energy of waterway to mechanical power for use in an energy accepting apparatus is described. The turbine has complimentary components that improve the power efficiency of the turbine. The turbine may include a blade shroud and a plurality of blades that are connected to the blade shroud. On the external surface of the blade shroud, a drive mechanism and/or a brake mechanism may be disposed. An inlet nozzle and outlet diffuser may be used in combination with the turbine. The turbine may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 13, 2010
    Applicant: CONCEPTS ETI, INC.
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo
  • Publication number: 20100119353
    Abstract: A system for installing and extracting a flowing water turbine below the surface of the water includes a flow inducer assembly for improving the conversation of the kinetic energy of a waterway to mechanical energy. The flow inducer assembly includes a nozzle that may be shaped as a cowling and a outlet diffuser. The system may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 13, 2010
    Applicant: CONCEPTS ETI, INC.
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo, Tsukasa Yoshinaka
  • Patent number: 6349714
    Abstract: A burner for a heat supplying device includes a substrate of thermally insulating material, the substrate defining a plurality of openings therethrough for flow of an air/gas mixture therethrough from a first side of the substrate to a second side of the substrate for combustion adjacent to the second side of the substrate. The burner further includes a high temperature metal wire disposed on the second side of the substrate and projecting outwardly therefrom, and a cover layer of heat transmissive material overlying the metal wire to provide a support surface on the heat-supplying device for supporting a heat-consuming item.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: February 26, 2002
    Assignee: Gas Research Institute
    Inventors: James R. Hurley, Frederick E. Becker, Anthony Duca
  • Patent number: 6235983
    Abstract: A hybrid power assembly includes a thermophotovoltaic (TPV) power conversion module for converting radiant thermal energy into electrical power, and a battery in electrical communication with the TPV power source and rechargeable by electrical power generated by the TPV power source.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: May 22, 2001
    Assignee: Thermo Power Corporation
    Inventors: Frederick E. Becker, Kailash C. Shukla, Edward F. Doyle, Maurice Nunes
  • Patent number: 6176596
    Abstract: A combination flashlight and electrical power source assembly includes an emitter and fuel system module, a fuel cartridge module fixed to the emitter and fuel system module, a photovoltaic conversion module attachable to a selected one of the emitter and fuel system module and the fuel cartridge module, and a flashlight lens module attachable to the other of the emitter and fuel system module and the fuel cartridge module. When the photovoltaic conversion module is attached to the emitter and fuel system module and the flashlight lens module is attached to the fuel cartridge module, the photovoltaic conversion module is active, the flashlight lens module functions as an end cap, and the assembly functions as an electrical power source.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: January 23, 2001
    Assignee: Thermo Power Corporation
    Inventors: Kailash C. Shukla, Edward F. Doyle, Frederick E. Becker, Ann S. Buck, Andrew E. Masters, Maurice Nunes