Patents by Inventor Frederick F. Lange

Frederick F. Lange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8926750
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of California
    Inventors: Jacob J. Richardson, Frederick F. Lange
  • Patent number: 8841691
    Abstract: A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: September 23, 2014
    Assignee: The Regents of the University of California
    Inventors: Jacob J. Richardson, Daniel B. Thompson, Ingrid Koslow, Jun-Seok Ha, Frederick F. Lange, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20140103361
    Abstract: A high brightness III-Nitride based Light Emitting Diode (LED), comprising multiple surfaces covered by Zinc Oxide (ZnO) layers, wherein the ZnO layers are grown in a low temperature aqueous solution and each have a (0001) c-orientation and a top surface that is a (0001) plane.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel B. Thompson, Jacob J. Richardson, Ingrid Koslow, Jun Seok Ha, Frederick F. Lange, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20140083352
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 27, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jacob J. Richardson, Frederick F. Lange
  • Publication number: 20130328012
    Abstract: A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicant: The Regents of the University of California
    Inventors: Jacob J. Richardson, Daniel B. Thompson, Ingrid Koslow, Jun-Seok Ha, Frederick F. Lange, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20110266551
    Abstract: A high brightness III-Nitride based Light Emitting Diode (LED), comprising multiple surfaces covered by Zinc Oxide (ZnO) layers, wherein the ZnO layers are grown in a low temperature aqueous solution and each have a (0001) c-orientation and a top surface that is a (0001) plane.
    Type: Application
    Filed: November 3, 2010
    Publication date: November 3, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel B. Thompson, Jacob J. Richardson, Ingrid Koslow, Jun Seok Ha, Frederick F. Lange, Steven P. DenBaars, Shuji Nakamura, Maryann E. Lange
  • Publication number: 20110108873
    Abstract: A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 12, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jacob J. Richardson, Daniel B. Thompson, Ingrid Koslow, Jun Seok Ha, Frederick F. Lange, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20110101414
    Abstract: A method for fabricating a Light Emitting Diode (LED) with increased light extraction efficiency, comprising providing a III-Nitride based LED structure comprising a light emitting active layer between a p-type layer and an n-type layer; growing a Zinc Oxide (ZnO) layer epitaxially on the p-type layer by submerging a surface of the p-type layer in a low temperature aqueous solution, wherein the ZnO layer is a transparent current spreading layer; and depositing a p-type contact on the ZnO layer. The increase in efficiency may be more than 93% with very little or no increase in cost.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 5, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel B. Thompson, Jacob J. Richardson, Steven P. DenBaars, Frederick F. Lange, MaryAnn E. Lange, Jin Hyeok Kim
  • Publication number: 20100263586
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jacob J. Richardson, Frederick F. Lange, Maryann E. Lange
  • Publication number: 20100173213
    Abstract: The present invention concerns improved configurations for a fuel cell army. The contacts for the positive electrode and the negative electrode are made outside the higher temperature active reaction space in a cooler area. Thus different more common materials are used which have a longer lifetime and have less stresses at their lower operating temperature. The invention utilizes tubular cell components connected with spines for efficient electron transfer and at least two manifolds outside the reaction zone, which may be cooled by external means. The external protruding connectors are thus at a lower operating temperature. This invention improves fuel cell life span, provides for lower cost, use of more common materials, and reduces the number thermal defects during operation.
    Type: Application
    Filed: June 30, 2006
    Publication date: July 8, 2010
    Applicant: The Regents of the University of California
    Inventors: Frederick F. Lange, Anil V. Virkar
  • Patent number: 6878466
    Abstract: Reliable, flaw-tolerant brittle materials are produced by incorporating layers under residual compression on the surface and throughout the bulk of the material that act to trap and contain the propagation of otherwise catastrophic cracking. The residual compression within these layers acts to reduce the stress intensity of the cracks, thereby causing them to arrest until further loading is provided. This highly desirable stable, subcritical crack growth mode persists with increased loading until the applied stress is large enough to drive the crack completely through compressive region, after which failure occurs. The exact level of stress needed to accomplish this is dictated by the architectural design of the compressive layers such that the material can be designed to have any minimum strength desired, within the limits of the materials system used. This results in a truncation of the strength distribution, such that there is virtually zero probability of failure below this minimum value, i.e.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 12, 2005
    Assignee: The Regents of the University of California
    Inventors: Frederick F. Lange, Masa P. Rao, Antonio Javier Sanchez Herencia
  • Patent number: 6787080
    Abstract: Colloidal isopressing provides a rapid method to form an engineering shape from a powder slurry, previously filtered to remove strength degrading inclusions. A slurry composed of a weakly attractive particle network, produced with a short-range, repulsive interparticle par potential, is consolidated to make a body with a high particle density that is easily fluidized by vibration. The fluid-like body is injected into a flexible mold and subjected to a larger isostatic pressure to force particles into contact. This creates a strong, elastic body with the shape of the mold. Because the particles are forced into contact at a high pressure, the liquid remaining within the component can be removed by evaporation without shrinkage, avoiding fracture during rapid drying.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: September 7, 2004
    Inventors: Frederick F. Lange, Benjamin C. Yu
  • Patent number: 6770131
    Abstract: A process for producing crystalline III-V compound films, preferably thin films of gallium nitride and other III-V nitrides, on various single crystal substrates. The process enables the preparation of III-V compound films by the simple, direct deposition of an amorphous layer of a III-V compound precursor on a single crystal substrate (as a template). A chemical reaction followed by a single heat treatment leads to the crystallization and formation of films by pyrolysis. According to specific examples of the invention, the chemical precursors gallium dimethyl amide (Ga2[N(CH3)2]6), gallium nitrate (Ga(NO3)3, and gallium isopropoxide [Ga(OC3H7)3 are used to produce gallium nitride thin films.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: August 3, 2004
    Assignee: The Regents of the University of California
    Inventors: Frederick F. Lange, David Kisailus
  • Publication number: 20030012874
    Abstract: A process for producing crystalline III-V compound films, preferably thin films of gallium nitride and other III-V nitrides, on various single crystal substrates. The process enables the preparation of III-V compound films by the simple, direct deposition of an amorphous layer of a III-V compound precursor on a single crystal substrate (as a template). A chemical reaction followed by a single heat treatment leads to the crystallization and formation of films by pyrolysis. According to specific examples of the invention, the chemical precursors gallium dimethyl amide (Ga2[N(CH3)2]6), gallium nitrate (Ga(NO3)3, and gallium isopropoxide [Ga(OC3H7)3 are used to produce gallium nitride thin films.
    Type: Application
    Filed: November 20, 2001
    Publication date: January 16, 2003
    Inventors: Frederick F. Lange, David Kisailus
  • Patent number: 6117233
    Abstract: Thin, single-crystal SiC films are obtained by means of a pyrolysis process, the substrate to be coated being covered with a carbonaceous polysilane, the adhering layer being pyrolyzed in an inert atmosphere and the amorphous layer of SiC obtained in this way being crystallized by maintaining it at a temperature of over 700.degree. C. Using a special variation of the process, it is easy to form doped SiC films. To this end the dopant is added in the form of a silane compound.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: September 12, 2000
    Assignee: Max-Planck-Gesellschaft zur Forderung DE
    Inventors: Joachim Bill, Frederick F. Lange, Thomas Wagner, Fritz Aldinger, Detlef Heimann
  • Patent number: 6087971
    Abstract: Ceramic radomes are fabricated using a method which reduces the dielectric losses of the ceramic material. A Si.sub.3 N.sub.4 ceramic powder is mixed with a suitable densification aid and then sintered to form a dense ceramic having a glassy phase. Silicon dioxide is then provided on the surface of the ceramic by packing it in silicon dioxide powder or by heating it in air to oxidize its surface. The ceramic and silicon dioxide are heated at a temperature sufficient to cause diffusion of impurities and additive cations from the glassy phase into the silicon dioxide. The surface of the ceramic is then ground to remove pits and to shape the ceramic into a radome.
    Type: Grant
    Filed: September 13, 1982
    Date of Patent: July 11, 2000
    Assignee: The Boeing Company
    Inventors: David R. Clarke, Frederick F. Lange
  • Patent number: 5856252
    Abstract: Damage-tolerant, continuous fiber ceramic matrix composites are fabricated to fill the space between the fibers with a powder. The powder particles are heat treated to form a porous framework without shrinkage, which is then strengthened with an inorganic synthesized from a precursor in solution. High particle packing densities is achieved within the fiber preform using a small particle-to-fiber diameter ratio. Filling the interstices with a powder increases the composite density and also limits the size of the crack-like voids within the matrix. The ceramic matrix composite (CMC) has mechanical characteristics similar to those found in wood. It is also affordable and inherently oxidation resistant. The composite is characterized by a heterogeneous distribution of fibers within a porous matrix having a homogeneous, fine porosity. A residual stress from thermal expansion mismatch of the matrix and fibers is created in the composite. The illustrated embodiment uses Al.sub.2 O.sub.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: January 5, 1999
    Assignee: The Regents of the University of California
    Inventors: Frederick F. Lange, Anthony G. Evans, Wen Chang Tu
  • Patent number: 5284698
    Abstract: In a Ce-ZrO.sub.2 -based laminar composite having enhanced fracture toughness, alternating barrier layers comprise a ceramic material that undergoes stress-induced phase transformation, if any, less readily than Ce-ZrO.sub.2. Separation of the barrier layers is normally in the range of about 10-200 .mu.m, with optimum individual barrier layer thicknesses at the lower end of the range. Powders of ceramic materials comprising the individual layers of the composite are dispersed in separate slurries. The pH of the slurries is adjusted to form coagulations in which the particles settle without mass segregation and can be consolidated to high density by centrifuging. After centrifuging, the supernatant liquid can be removed and a desired volume of another slurry can be added on top of the first layer of consolidated material. This process can be repeated indefinitely to form a consolidated structure having individual layers as thin as approximately 10 .mu.m.
    Type: Grant
    Filed: September 18, 1991
    Date of Patent: February 8, 1994
    Assignees: Rockwell Int'l Corp., Regents of the University of California
    Inventors: David B. Marshall, Frederick F. Lange, Joseph J. Ratto
  • Patent number: 5188780
    Abstract: A method of preparing dense ceramic product is described, wherein a coagulated network of ceramic powder particles in water is formed and then treated to increase the volume fraction of particles, thereby forming a water-saturated powder compact. The compact is formed into a desired shape and fired to provide the dense ceramic product. A coagulated network may advantageously be formed by mixing a ceramic powder with water at a pH that produces a net surface charge, to form a dispersed slurry and adding a sufficient amount of salt to the dispersed slurry to cause particles within the slurry to form the coagulated network.
    Type: Grant
    Filed: April 18, 1991
    Date of Patent: February 23, 1993
    Assignee: Regents of the University of California
    Inventors: Frederick F. Lange, Bhaskar V. Velamakanni
  • Patent number: 5167271
    Abstract: The present invention relates to processes to produce ceramic reinforced and ceramic-metal matrix composite articles. More specifically, the invention concerns the use of pressure filtration to infiltrate a reinforcing organic or inorganic network with ceramic particles. Centrifugation is also used to separate the liquid form the slurry. After heating the reinforced ceramic article is produced. Pressure filtration is also used to infiltrate an organic polymer or organic fiber network with ceramic particles. The solvent is removed carefully followed by intermediate heating to remove the organic network without deforming the preform shape. After densification, the preform is heated and contacted with molten metal (optionally) with pressure to infiltrate the open channel network. Upon cooling the ceramic metal matrix composite is obtained. The reinforced matrix articles are useful in high temperature and high stress applications, e.g.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: December 1, 1992
    Inventors: Frederick F. Lange, Robert Mehrabian, Anthony G. Evans, Bhaskar V. Velamakanni, David C. Lam