Patents by Inventor Frederick H. Eggers

Frederick H. Eggers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220403476
    Abstract: Provided herein is a method for detecting the presence of a COVID-19 virus RNA or other pathogenic respiratory viruses, such as an influenza virus, or other RNA of interest in a sample. Nucleic acids are obtained from the sample and are used as a template in a combined isothermal reverse transcription, RNAse H and isothermal amplification reaction to generate single stranded RNA amplicons containing sequences complementary to fluorescent labeled detector probes. The single-stranded RNA amplicons hybridize to the detector probe and to hybridization probes with sequences complementary to a sequence determinant in the COVID-19 or other virus RNAs. The microarray is imaged to detect fluorescent signals thereby identifying the virus.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 22, 2022
    Applicant: PathogenDx, Inc.
    Inventors: Fushi Wen, Frederick H. Eggers, Michael E. Hogan
  • Publication number: 20210317540
    Abstract: Provided herein is a method of quantitating a fungus in a plant, plant product or agricultural product. Total nucleic acids are isolated from a sample of the plant or plant product, and an asymmetric PCR amplification reaction is performed using fluorescent labeled primer pairs to obtain fluorescent labeled fungal amplicons. These amplicons are hybridized to fungus specific nucleic acid probes that are attached on a microarray support. The microarray is imaged to detect fluorescent signals from the fluorescent labeled fungal amplicons. The fluorescent signal intensity is correlated to the quantity of fungus.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Applicant: PathogenDx, Inc.
    Inventors: Melissa May, Frederick H. Eggers, Kevin M. O'Brien, Peaches R. Ulrich, Benjamin A. Katchman, Shayla Freeman, Michael E. Hogan
  • Publication number: 20210317528
    Abstract: Complex blood group typing can be performed at the DNA level, using for example, air-dried cheek swabs or finger prick blood in a microarray test that completely bypasses the need for DNA extraction prior to analysis of the blood group type.
    Type: Application
    Filed: July 23, 2019
    Publication date: October 14, 2021
    Applicant: GENOMICS USA, INC.
    Inventors: FREDERICK H. EGGERS, GEORGINA LOPEZ PADILLA, PO LIN, KEVIN O'BRIEN, MICHAEL E. HOGAN, KRISHNA JAYARAMAN
  • Publication number: 20210130898
    Abstract: Provided herein is a method for identifying a mastitis-causing microbe in a subject. A milk sample is centrifuged to form a microbial pellet, total nucleic acids are extracted from the pellet and a microarray analysis of extracted DNA from which the mastitis-causing microbe is identified from DNA hybridization to mastitis-causing microbe species-specific gene probes. Also provided is a method for diagnosing a bovine mastitis infection in a dairy cow after identifying the bovine mastitis-causing microbe in a raw milk sample from the dairy cow.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 6, 2021
    Applicant: PathogenDx, Inc.
    Inventors: Michael E. Hogan, Frederick H. Eggers, Melissa R. May
  • Patent number: 10888830
    Abstract: Provided herein are biomolecular hybridization devices comprising a substrate with a permanently and covalently attached surface of functional groups and an adsorbed monolayer of unmodified, single-stranded oligonucleotides all of which are 10 to about 24 bases in length as a saturated film of constrained oligonucleotides on the surface via direct non-covalent phosphate-surface adsorptive contact of substantially all phosphate groups of each oligonucleotide. The constrained oligonucleotides are effective to dissociably hybridize to a complementary single-stranded nucleic acid with asymmetric, non-helical base pairing and without oligonucleotide dissociation from the surface of the device. Also, provided are methods for hybridizing solution-state target nucleic acids to probe nucleic acids and for identifying a nucleotide sequence to which a nucleotide-binding protein binds using the biomolecular hybridization devices.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: January 12, 2021
    Assignees: Genomics USA, Inc., Baylor College of Medicine
    Inventors: Michael E. Hogan, Joseph G. Utermohlen, Frederick H. Eggers, Krishna Jayaraman
  • Publication number: 20190209996
    Abstract: Provided herein are biomolecular hybridization devices comprising a substrate with a permanently and covalently attached surface of functional groups and an adsorbed monolayer of unmodified, single-stranded oligonucleotides all of which are 10 to about 24 bases in length as a saturated film of constrained oligonucleotides on the surface via direct non-covalent phosphate-surface adsorptive contact of substantially all phosphate groups of each oligonucleotide. The constrained oligonucleotides are effective to dissociably hybridize to a complementary single-stranded nucleic acid with asymmetric, non-helical base pairing and without oligonucleotide dissociation from the surface of the device. Also, provided are methods for hybridizing solution-state target nucleic acids to probe nucleic acids and for identifying a nucleotide sequence to which a nucleotide-binding protein binds using the biomolecular hybridization devices.
    Type: Application
    Filed: March 20, 2018
    Publication date: July 11, 2019
    Applicant: Genomics USA, Inc.
    Inventors: Michael E. Hogan, Sergy Lemeshko, Yuri Belosludtsev, Thomas F. Powdrill, Rahul Mitra, Joseph G. Utermohlen, Frederick H. Eggers
  • Patent number: 10272409
    Abstract: Provided herein are biomolecular hybridization devices comprising a substrate with a permanently and covalently attached surface of functional groups and an adsorbed monolayer of unmodified, single-stranded oligonucleotides all of which are 10 to about 24 bases in length as a saturated film of constrained oligonucleotides on the surface via direct non-covalent phosphate-surface adsorptive contact of substantially all phosphate groups of each oligonucleotide. The constrained oligonucleotides are effective to dissociably hybridize to a complementary single-stranded nucleic acid with asymmetric, non-helical base pairing and without oligonucleotide dissociation from the surface of the device. Also, provided are methods for hybridizing solution-state target nucleic acids to probe nucleic acids and for identifying a nucleotide sequence to which a nucleotide-binding protein binds using the biomolecular hybridization devices.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: April 30, 2019
    Inventors: Michael E. Hogan, Sergy Lemeshko, Yuri Belosludtsev, Thomas F. Powdrill, Rahul Mitra, Joseph G. Utermohlen, Frederick H. Eggers
  • Publication number: 20140135231
    Abstract: The present invention provides a portable system for real-time population-scale HLA genotyping and/or allelotyping in a field environment and methods of such population-scale HLA genotyping. The individual components of the system are portable to and operable within a field environment thereby providing high throughput with real-time geno- or allelotyping. Also provided are HLA gene-specific primers and HLA allele-specific or single nucleotide polymorphism-specific hybridization probes. In addition the present invention provides a microarray comprising the hybridization probes. Further provided is a kit comprising the HLA gene-specific primers and the microarray.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 15, 2014
    Inventors: Michael E. Hogan, Krishna Jayaraman, Frederick H. Eggers, Rahul Mitra
  • Patent number: 8575325
    Abstract: The present invention provides a portable system for real-time population-scale HLA genotyping and/or allelotyping in a field environment and methods of such population-scale HLA genotyping. The individual components of the system are portable to and operable within a field environment thereby providing high throughput with real-time geno- or allelotyping. Also provided are HLA gene-specific primers and HLA allele-specific or single nucleotide polymorphism-specific hybridization probes. In addition the present invention provides a microarray comprising the hybridization probes. Further provided is a kit comprising the HLA gene-specific primers and the microarray.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: November 5, 2013
    Assignee: Genomics USA, Inc.
    Inventors: Krishna Jayaraman, Rahul Mitra, Michael E Hogan, Frederick H Eggers
  • Publication number: 20120302457
    Abstract: The present invention provides a portable system for real-time population-scale HLA genotyping and/or allelotyping in a field environment and methods of such population-scale HLA genotyping. The individual components of the system are portable to and operable within a field environment thereby providing high throughput with real-time geno- or allelotyping. Also provided are HLA gene-specific primers and HLA allele-specific or single nucleotide polymorphism-specific hybridization probes. In addition the present invention provides a microarray comprising the hybridization probes. Further provided is a kit comprising the HLA gene-specific primers and the microarray.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 29, 2012
    Applicant: GENOMICS USA, INC.
    Inventors: Krishna Jayaraman, Michael E. Hogan, Frederick H. Eggers, Rahul Mitra
  • Patent number: 8183360
    Abstract: The present invention provides a portable system for real-time population-scale HLA genotyping and/or allelotyping in a field environment and methods of such population-scale HLA genotyping. The individual components of the system are portable to and operable within a field environment thereby providing high throughput with real-time geno- or allelotyping. Also provided are HLA gene-specific primers and HLA allele-specific or single nucleotide polymorphism-specific hybridization probes. In addition the present invention provides a microarray comprising the hybridization probes. Further provided is a kit comprising the HLA gene-specific primers and the microarray.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 22, 2012
    Assignee: Genomics USA, Inc
    Inventors: Rahul Mitra, Krishna Jayaraman, Frederick H. Eggers, Michäel E. Hogan
  • Publication number: 20100279889
    Abstract: The present invention provides a portable system for real-time population-scale HLA genotyping and/or allelotyping in a field environment and methods of such population-scale HLA genotyping. The individual components of the system are portable to and operable within a field environment thereby providing high throughput with real-time geno- or allelotyping. Also provided are HLA gene-specific primers and HLA allele-specific or single nucleotide polymorphism-specific hybridization probes. In addition the present invention provides a microarray comprising the hybridization probes. Further provided is a kit comprising the HLA gene-specific primers and the microarray.
    Type: Application
    Filed: February 18, 2010
    Publication date: November 4, 2010
    Inventors: Rahul Mitra, Krishna Jayaraman, Frederick H. Eggers, Michäel E. Hogan
  • Patent number: 7667026
    Abstract: The present invention provides a portable system for real-time population-scale HLA genotyping and/or allelotyping in a field environment and methods of such population-scale HLA genotyping. The individual components of the system are portable to and operable within a field environment thereby providing high throughput with real-time geno- or allelotyping. Also provided are HLA gene-specific primers and HLA allele-specific or single nucleotide polymorphism-specific hybridization probes. In addition the present invention provides a microarray comprising the hybridization probes. Further provided is a kit comprising the HLA gene-specific primers and the microarray.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: February 23, 2010
    Assignee: Genomics USA, Inc.
    Inventors: Michael E. Hogan, Krishna Jayaraman, Rahul Mitra, Frederick H. Eggers
  • Publication number: 20090011949
    Abstract: Provided herein are biomolecular hybridization devices comprising a substrate with a permanently and covalently attached surface of functional groups and an adsorbed monolayer of unmodified, single-stranded oligonucleotides all of which are 10 to about 24 bases in length as a saturated film of constrained oligonucleotides on the surface via direct non-covalent phosphate-surface adsorptive contact of substantially all phosphate groups of each oligonucleotide. The constrained oligonucleotides are effective to dissociably hybridize to a complementary single-stranded nucleic acid with asymmetric, non-helical base pairing and without oligonucleotide dissociation from the surface of the device. Also, provided are methods for hybridizing solution-state target nucleic acids to probe nucleic acids and for identifying a nucleotide sequence to which a nucleotide-binding protein binds using the biomolecular hybridization devices.
    Type: Application
    Filed: April 4, 2008
    Publication date: January 8, 2009
    Inventors: Michael E. Hogan, Sergy Lemeshko, Yuri Belosludtsev, Thomas F. Powdrill, Rahul Mitra, Joseph G. Utermohlen, Frederick H. Eggers