Patents by Inventor Frederick Ira MOXLEY, III

Frederick Ira MOXLEY, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11156460
    Abstract: The present disclosure relates to Superfluid QUantum Interference Devices (SQUIDs) that measure phase differences existing in quasi-particles or matter-wave systems, and the related techniques for their use at room-temperatures. These Bose-Einstein Condensation interferometry techniques include quantum scale metrology devices such as quasi-particle based linear accelerometers, gyroscopes, and Inertial Measurement Units that incorporate such interferometers. In the presence of additive white Gaussian noise, estimates are made for the Bias Instability, Angle Random Walk, and Velocity Random Walk of the device for purposes of quantum inertial sensing. Moreover, this disclosure relates to SQUIDs based on charged quasi-particles that can, in turn, be used to construct quantum computing elements such as quantum transistors, and quasi-particle circuits at room-temperatures. These quasi-particle circuits can be used to build analogs of electronic circuit elements, and offer an alternative to traditional electronics.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: October 26, 2021
    Inventor: Frederick Ira Moxley, III
  • Publication number: 20200363206
    Abstract: The present disclosure relates to Superfluid QUantum Interference Devices (SQUIDs) that measure phase differences existing in quasi-particles or matter-wave systems, and the related techniques for their use at room-temperatures. These Bose-Einstein Condensation interferometry techniques include quantum scale metrology devices such as quasi-particle based linear accelerometers, gyroscopes, and Inertial Measurement Units that incorporate such interferometers. In the presence of additive white Gaussian noise, estimates are made for the Bias Instability, Angle Random Walk, and Velocity Random Walk of the device for purposes of quantum inertial sensing. Moreover, this disclosure relates to SQUIDs based on charged quasi-particles that can, in turn, be used to construct quantum computing elements such as quantum transistors, and quasi-particle circuits at room-temperatures. These quasi-particle circuits can be used to build analogs of electronic circuit elements, and offer an alternative to traditional electronics.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventor: Frederick Ira MOXLEY, III
  • Patent number: 10775173
    Abstract: The present disclosure relates to Superfluid QUantum Interference Devices (SQUIDs) that measure phase differences existing in quasi-particles or matter-wave systems, and the related techniques for their use at room-temperatures. These Bose-Einstein Condensation interferometry techniques include quantum scale metrology devices such as quasi-particle based linear accelerometers, gyroscopes, and Inertial Measurement Units that incorporate such interferometers. In the presence of additive white Gaussian noise, estimates are made for the Bias Instability, Angle Random Walk, and Velocity Random Walk of the device for purposes of quantum inertial sensing. Moreover, this disclosure relates to SQUIDs based on charged quasi-particles that can, in turn, be used to construct quantum computing elements such as quantum transistors, and quasi-particle circuits at room-temperatures. These quasi-particle circuits can be used to build analogs of electronic circuit elements, and offer an alternative to traditional electronics.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: September 15, 2020
    Inventor: Frederick Ira Moxley, III
  • Publication number: 20190212147
    Abstract: The present disclosure relates to Superfluid QUantum Interference Devices (SQUIDs) that measure phase differences existing in quasi-particles or matter-wave systems, and the related techniques for their use at room-temperatures. These Bose-Einstein Condensation interferometry techniques include quantum scale metrology devices such as quasi-particle based linear accelerometers, gyroscopes, and Inertial Measurement Units that incorporate such interferometers. In the presence of additive white Gaussian noise, estimates are made for the Bias Instability, Angle Random Walk, and Velocity Random Walk of the device for purposes of quantum inertial sensing. Moreover, this disclosure relates to SQUIDs based on charged quasi-particles that can, in turn, be used to construct quantum computing elements such as quantum transistors, and quasi-particle circuits at room-temperatures. These quasi-particle circuits can be used to build analogs of electronic circuit elements, and offer an alternative to traditional electronics.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Inventor: Frederick Ira MOXLEY, III
  • Patent number: 10281278
    Abstract: The present disclosure relates to Superfluid QUantum Interference Devices (SQUIDs) that measure phase differences existing in quasi-particles or matter-wave systems, and the related techniques for their use at room-temperatures. These Bose-Einstein Condensation interferometry techniques include quantum scale metrology devices such as quasi-particle based linear accelerometers, gyroscopes, and Inertial Measurement Units that incorporate such interferometers. In the presence of additive white Gaussian noise, estimates are made for the Bias Instability, Angle Random Walk, and Velocity Random Walk of the device for purposes of quantum inertial sensing. Moreover, this disclosure relates to SQUIDs based on charged quasi-particles that can, in turn, be used to construct quantum computing elements such as quantum transistors, and quasi-particle circuits at room-temperatures. These quasi-particle circuits can be used to build analogs of electronic circuit elements, and offer an alternative to traditional electronics.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: May 7, 2019
    Inventor: Frederick Ira Moxley, III
  • Publication number: 20170199036
    Abstract: The present disclosure relates to Superfluid QUantum Interference Devices (SQUIDs) that measure phase differences existing in quasi-particles or matter-wave systems, and the related techniques for their use at room-temperatures. These Bose-Einstein Condensation interferometry techniques include quantum scale metrology devices such as quasi-particle based linear accelerometers, gyroscopes, and Inertial Measurement Units that incorporate such interferometers. In the presence of additive white Gaussian noise, estimates are made for the Bias Instability, Angle Random Walk, and Velocity Random Walk of the device for purposes of quantum inertial sensing. Moreover, this disclosure relates to SQUIDs based on charged quasi-particles that can, in turn, be used to construct quantum computing elements such as quantum transistors, and quasi-particle circuits at room-temperatures. These quasi-particle circuits can be used to build analogs of electronic circuit elements, and offer an alternative to traditional electronics.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 13, 2017
    Inventor: Frederick Ira MOXLEY, III