Patents by Inventor Frederick J. Gagliardi

Frederick J. Gagliardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10955594
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 23, 2021
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 10761247
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: September 1, 2020
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20180259688
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 13, 2018
    Inventors: Jason Scott Ballou, Frederick J. Gagliardi, Gary Allen Hart, Timothy R. Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20180196173
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 9995860
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: June 12, 2018
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20170227689
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types, methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: September 15, 2016
    Publication date: August 10, 2017
    Inventors: Jason S. Ballou, Frederick J. Gagliardi, Gary Allen Hart, Timothy R. Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 9488760
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR_SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 8, 2016
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard G Wamboldt, Jue Wang
  • Patent number: 8828526
    Abstract: The disclosure is directed to enhanced silver coated aluminum substrates for use as optical mirrors in which galvanic corrosion between the silver and aluminum is prevented and a method of making such silver coating and mirrors. The optical mirror according to the disclosure has an in-situ formed “barrier” layer inserted between the aluminum substrate and the silver layer. In addition, selected layers are densified by carrying out their deposition using a high power RF ion source during their deposition.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: September 9, 2014
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi
  • Publication number: 20140240821
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR_SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 28, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Jason S. Ballou, Frederick J. Gagliardi, Gary Allen Hart, Timothy R. Soucy, Robin Merchant Walton, Leonard G. Wamboldt, Jue Wang
  • Publication number: 20120128954
    Abstract: The disclosure is directed to enhanced silver coated aluminum substrates for use as optical mirrors in which galvanic corrosion between the silver and aluminum is prevented and a method of making such silver coating and mirrors. The optical mirror according to the disclosure has an in-situ formed “barrier” layer inserted between the aluminum substrate and the silver layer. In addition, selected layers are densified by carrying out their deposition using a high power RF ion source during their deposition.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Inventors: Jason S. Ballou, Frederick J. Gagliardi