Patents by Inventor Frederick Korley

Frederick Korley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931161
    Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or a moderate, severe, or moderate to severe traumatic brain injury (TBI), by detecting levels of cardiac troponin I (cTnI) and one or more early biomarkers which are not cTnI, such as ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), or a combination thereof, in biological samples taken from a human subject at time points within about 24 hours of injury after the subject has sustained or may have sustained the injury to the head.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: March 19, 2024
    Assignee: ABBOTT LABORATORIES
    Inventors: Beth McQuiston, Frederick Korley, Agim Beshiri, Jaime Marino, Saul Datwyler
  • Patent number: 11896974
    Abstract: A microfluidic device system includes a channel having an entrance and an exit, a height at the entrance being greater than a height at the exit. The height of the channel may decrease continuously from the height at the entrance to the height at the exit. Cells or particles or beads traveling through the channel become trapped based on their size and/or deformability. A visual sensor captures images of the trapped cells or particles or beads, and image software analyzes the captured images to provide size and/or deformability and/or fluorescence information. A method of fabricating such a microfluidic device includes introducing a glass wafer to an etching solution at a specific rate such that a first end of the glass wafer is etched longer than other portions of the glass wafer.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: February 13, 2024
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Mark A. Burns, Alyse D. Krausz, Sarah Elizabeth Mena, Martin Patrick De Beer, Kevin R. Ward, Frederick Korley
  • Publication number: 20230077876
    Abstract: The present invention relates to the field of brain injuries. More specifically, the present invention provides methods and compositions useful in the diagnosis/prognosis/assessment of brain injuries. In a specific embodiment, a method for identifying which patients with traumatic brain injury (TBI) require a head computerized tomography (CT) scan for diagnosing acute intracranial pathology comprises the steps of (a) obtaining or collecting a sample from the patient; (b) measuring the levels of one or more biomarkers in the blood sample obtained from the patient, wherein the biomarkers comprise glial fibrillary acidic protein (GFAP), S100B, metallothionein 3 (MT3), neuron specific enolase (NSE) and intracellular adhesion molecule 5 (ICAM5); and (c) identifying the patient as requiring or not requiring a head CT scan based on the measured levels of one or more of biomarkers comprising GFAP, S100B, MT3, NSE and ICAM5.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 16, 2023
    Applicant: The Johns Hopkins University
    Inventors: Allen D. EVERETT, Jennifer E. VAN EYK, Frederick KORLEY
  • Patent number: 11499982
    Abstract: The present invention relates to the field of brain injuries. More specifically, the present invention provides methods and compositions useful in the diagnosis/prognosis/assessment of brain injuries. In a specific embodiment, a method for identifying which patients with traumatic brain injury (TBI) require a head computerized tomography (CT) scan for diagnosing acute intracranial pathology comprises the steps of (a) obtaining or collecting a sample from the patient; (b) measuring the levels of one or more biomarkers in the blood sample obtained from the patient, wherein the biomarkers comprise glial fibrillary acidic protein (GFAP), S100B, metallothionein 3 (MT3), neuron specific enolase (NSE) and intracellular adhesion molecule 5 (ICAM5); and (c) identifying the patient as requiring or not requiring a head CT scan based on the measured levels of one or more of biomarkers comprising GFAP, S100B, MT3, NSE and ICAM5.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: November 15, 2022
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Allen D. Everett, Jennifer E. Van Eyk, Frederick Korley
  • Publication number: 20220355297
    Abstract: A microfluidic device system includes a channel having an entrance and an exit, a height at the entrance being greater than a height at the exit. The height of the channel may decrease continuously from the height at the entrance to the height at the exit. Cells or particles or beads traveling through the channel become trapped based on their size and/or deformability. A visual sensor captures images of the trapped cells or particles or beads, and image software analyzes the captured images to provide size and/or deformability and/or fluorescence information. A method of fabricating such a microfluidic device includes introducing a glass wafer to an etching solution at a specific rate such that a first end of the glass wafer is etched longer than other portions of the glass wafer.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 10, 2022
    Inventors: Mark A. Burns, Alyse D. Krausz, Sarah Elizabeth Mena, Martin Patrick De Beer, Kevin R. Ward, Frederick Korley
  • Publication number: 20220347688
    Abstract: A microfluidic device system includes a channel having an entrance and an exit, a height at the entrance being greater than a height at the exit. The height of the channel may decrease continuously from the height at the entrance to the height at the exit. Cells or particles or beads traveling through the channel become trapped based on their size and/or deformability. A visual sensor captures images of the trapped cells or particles or beads, and image software analyzes the captured images to provide size and/or deformability and/or fluorescence information. A method of fabricating such a microfluidic device includes introducing a glass wafer to an etching solution at a specific rate such that a first end of the glass wafer is etched longer than other portions of the glass wafer.
    Type: Application
    Filed: July 7, 2022
    Publication date: November 3, 2022
    Inventors: Mark A. Burns, Alyse D. Krausz, Sarah Elizabeth Mena, Martin Patrick De Beer, Kevin R. Ward, Frederick Korley
  • Patent number: 11389799
    Abstract: A microfluidic device system includes a channel having an entrance and an exit, a height at the entrance being greater than a height at the exit. The height of the channel may decrease continuously from the height at the entrance to the height at the exit. Cells or particles or beads traveling through the channel become trapped based on their size and/or deformability. A visual sensor captures images of the trapped cells or particles or beads, and image software analyzes the captured images to provide size and/or deformability and/or fluorescence information. A method of fabricating such a microfluidic device includes introducing a glass wafer to an etching solution at a specific rate such that a first end of the glass wafer is etched longer than other portions of the glass wafer.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: July 19, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Mark A. Burns, Alyse D. Krausz, Sarah Elizabeth Mena, Martin Patrick De Beer, Kevin R. Ward, Frederick Korley
  • Publication number: 20220047205
    Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or moderate, severe, or moderate to severe traumatic brain injury (TBI), using cTnI. Also disclosed are methods for determining whether to perform a head computerized tomography on a subject by detecting levels of cTnI. Finally, also disclosed are methods of outcome in subjects suffering from a mild TBI.
    Type: Application
    Filed: August 25, 2021
    Publication date: February 17, 2022
    Inventors: Beth McQuiston, Frederick Korley, Agim Beshiri, Jaime Marino, Saul Datwyler
  • Patent number: 11129564
    Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or moderate, severe, or moderate to severe traumatic brain injury (TBI), using cTnI. Also disclosed are methods for determining whether to perform a head computerized tomography on a subject by detecting levels of cTnI. Finally, also disclosed are methods of outcome in subjects suffering from a mild TBI.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 28, 2021
    Assignee: Abbott Laboratories
    Inventors: Beth McQuiston, Frederick Korley, Agim Beshiri, Jaime Marino, Saul Datwyler
  • Publication number: 20210059594
    Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or a moderate, severe, or moderate to severe traumatic brain injury (TBI), by detecting levels of cardiac troponin I (cTnI) and one or more early biomarkers which are not cTnI, such as ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), or a combination thereof, in biological samples taken from a human subject at time points within about 24 hours of injury after the subject has sustained or may have sustained the injury to the head.
    Type: Application
    Filed: October 29, 2020
    Publication date: March 4, 2021
    Inventors: Beth McQuiston, Frederick Korley, Agim Beshiri, Jaime Marino, Saul Datwyler
  • Patent number: 10849548
    Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or a moderate, severe, or moderate to severe traumatic brain injury (TBI), by detecting levels of cardiac troponin I (cTnI) and one or more early biomarkers which are not cTnI, such as ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), or a combination thereof, in biological samples taken from a human subject at time points within about 24 hours of injury after the subject has sustained or may have sustained the injury to the head.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 1, 2020
    Assignee: Abbott Laboratories
    Inventors: Beth McQuiston, Frederick Korley, Agim Beshiri, Jaime Marino, Saul Datwyler
  • Publication number: 20200116739
    Abstract: The present invention relates to the field of brain injuries. More specifically, the present invention provides methods and compositions useful in the diagnosis/prognosis/assessment of brain injuries. In a specific embodiment, a method for identifying which patients with traumatic brain injury (TBI) require a head computerized tomography (CT) scan for diagnosing acute intracranial pathology comprises the steps of (a) obtaining or collecting a sample from the patient; (b) measuring the levels of one or more biomarkers in the blood sample obtained from the patient, wherein the biomarkers comprise glial fibrillary acidic protein (GFAP), S100B, metallothionein 3 (MT3), neuron specific enolase (NSE) and intracellular adhesion molecule 5 (ICAM5); and (c) identifying the patient as requiring or not requiring a head CT scan based on the measured levels of one or more of biomarkers comprising GFAP, S100B, MT3, NSE and ICAM5.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: ALLEN D. EVERETT, JENNIFER E. VAN EYK, FREDERICK KORLEY
  • Patent number: 10534003
    Abstract: The present invention relates to the field of brain injuries. More specifically, the present invention provides methods and compositions useful in the diagnosis/prognosis/assessment of brain injuries. In a specific embodiment, a method for identifying which patients with traumatic brain injury (TBI) require a head computerized tomography (CT) scan for diagnosing acute intracranial pathology comprises the steps of (a) obtaining or collecting a sample from the patient; (b) measuring the levels of one or more biomarkers in the blood sample obtained from the patient, wherein the biomarkers comprise glial fibrillary acidic protein (GFAP), S100B, metallothionein 3 (MT3), neuron specific enolase (NSE) and intracellular adhesion molecule 5 (ICAM5); and (c) identifying the patient as requiring or not requiring a head CT scan based on the measured levels of one or more of biomarkers comprising GFAP, S100B, MT3, NSE and ICAM5.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: January 14, 2020
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Allen D. Everett, Jennifer E. Van Eyk, Frederick Korley
  • Publication number: 20190000369
    Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or moderate, severe, or moderate to severe traumatic brain injury (TBI), using cTnI. Also disclosed are methods for determining whether to perform a head computerized tomography on a subject by detecting levels of cTnI. Finally, also disclosed are methods of outcome in subjects suffering from a mild TBI.
    Type: Application
    Filed: May 30, 2018
    Publication date: January 3, 2019
    Inventors: Beth McQuiston, Frederick Korley, Agim Beshiri, Jaime Marino, Saul Datwyler
  • Publication number: 20180364261
    Abstract: Disclosed herein are methods that aid in the diagnosis and evaluation of a human subject that has sustained or may have sustained an injury to the head, such as mild or a moderate, severe, or moderate to severe traumatic brain injury (TBI), by detecting levels of cardiac troponin I (cTnI) and one or more early biomarkers which are not cTnI, such as ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), or a combination thereof, in biological samples taken from a human subject at time points within about 24 hours of injury after the subject has sustained or may have sustained the injury to the head.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 20, 2018
    Inventors: Beth McQuiston, Frederick Korley, Agim Beshiri, Jaime Marino, Saul Datwyler
  • Publication number: 20160178643
    Abstract: The present invention relates to the field of brain injuries. More specifically, the present invention provides methods and compositions useful in the diagnosis/prognosis/assessment of brain injuries. In a specific embodiment, a method for identifying which patients with traumatic brain injury (TBI) require a head computerized tomography (CT) scan for diagnosing acute intracranial pathology comprises the steps of (a) obtaining or collecting a sample from the patient; (b) measuring the levels of one or more biomarkers in the blood sample obtained from the patient, wherein the biomarkers comprise glial fibrillary acidic protein (GFAP), S100B, metallothionein 3 (MT3), neuron specific enolase (NSE) and intracellular adhesion molecule 5 (ICAM5); and (c) identifying the patient as requiring or not requiring a head CT scan based on the measured levels of one or more of biomarkers comprising GFAP, S100B, MT3, NSE and ICAM5.
    Type: Application
    Filed: July 17, 2014
    Publication date: June 23, 2016
    Inventors: Allen D. Everett, Jennifer E. Van Eyk, Frederick Korley