Patents by Inventor Frederick M. Schwarz

Frederick M. Schwarz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11215143
    Abstract: A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, and a compressor section including a low pressure compressor and a second compressor section, and a turbine section including a fan drive turbine and a high pressure turbine. The fan drive turbine drives the low pressure compressor and a gear arrangement to drive the fan section. A core split power ratio is provided by power input to the high pressure compressor divided by a power input to the low pressure compressor measured in horsepower.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 4, 2022
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Daniel Bernard Kupratis, Frederick M. Schwarz
  • Patent number: 11215120
    Abstract: A gas turbine engine comprises a compressor section and a turbine section, the compressor section having a last compressor stage. High pressure cooling air is tapped from a location downstream of the last compressor stage and passed through a heat exchanger. Lower pressure air passes across the heat exchanger to cool the high pressure cooling air. A housing surrounds the compressor section and the turbine section and there being a space radially outwardly of the housing, and a mixing chamber received in the space radially outwardly of the housing, the mixing chamber receiving the high pressure cooling air downstream of the heat exchanger, and further receiving air at a temperature higher than a temperature of the high pressure cooling air downstream of the heat exchanger. Mixed air from the mixing chamber is returned into the housing and utilized to cool at least the turbine section.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: January 4, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: James D. Hill, Frederick M. Schwarz
  • Patent number: 11203982
    Abstract: A turbofan engine includes a geared architecture for driving a fan about an axis. The geared architecture includes a sun gear rotatable about an axis, a plurality of planet gears driven by the sun gear and a ring gear circumscribing the plurality of planet gears. A carrier supports the plurality of planet gears. The geared architecture includes a power transfer parameter (PTP) defined as power transferred through the geared architecture divided by gear volume multiplied by a gear reduction ratio and is between 219 and 328.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 21, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Frederick M. Schwarz, William G. Sheridan
  • Publication number: 20210372349
    Abstract: A gas turbine engine includes, among other things, a propulsor section including a rotor, a gear train, a low spool and a high spool. A static structure includes a first case and a second case. A mount system includes a forward mount and an aft mount arranged in a plane containing an engine axis of rotation. The forward mount is secured to the first case. The aft mount is secured to the second case.
    Type: Application
    Filed: August 6, 2021
    Publication date: December 2, 2021
    Inventors: Gabriel L. Suciu, Brian D. Merry, Christopher M. Dye, Steven B. Johnson, Frederick M. Schwarz
  • Publication number: 20210355866
    Abstract: A propulsor section includes a propulsor having a plurality of blades rotatable about an engine longitudinal axis. A compressor section includes a low pressure compressor and a high pressure compressor. A turbine section includes a low pressure turbine that drives the propulsor through an epicyclic gear arrangement, and includes a second turbine that drives the high pressure compressor. A power ratio is provided by the combination of a first power input of the low pressure compressor and a second power input of the high pressure compressor. The power ratio is defined by the second power input divided by the first power input. The power ratio is equal to, or greater than, 1.0 and less than, or equal to, 1.4.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Inventors: Daniel Bernard Kupratis, Frederick M. Schwarz
  • Publication number: 20210348556
    Abstract: A gas turbine engine turbine has a high pressure turbine configured to rotate with a high pressure compressor as a high pressure spool in a first direction about a central axis and a low pressure turbine configured to rotate with a low pressure compressor as a low pressure spool in the first direction about the central axis. A power density is greater than or equal to about 1.5 and less than or equal to about 5.5 lbf/cubic inches. A fan is connected to the low pressure spool via a speed changing mechanism and rotates in the first direction.
    Type: Application
    Filed: March 4, 2021
    Publication date: November 11, 2021
    Inventors: Frederick M. Schwarz, Daniel Bernard Kupratis
  • Patent number: 11168574
    Abstract: An assembly is provided for rotational equipment. The assembly includes a circumferentially segmented stator and a rotor radially within the stator. The assembly also includes a seal assembly configured for substantially sealing a gap radially between the stator and the rotor. The seal assembly includes a carrier and a non-contact seal seated with the carrier. The carrier includes a plurality of discrete carrier segments circumferentially arranged around the non-contact seal.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 9, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Frederick M. Schwarz, William K. Ackermann
  • Publication number: 20210339880
    Abstract: An aircraft propulsion system is disclosed and includes a first gas turbine engine including a first input shaft driving a first gear system, a first fan driven by the first gear system, a first generator supported on the first input shaft and a fan drive electric motor providing a drive input to the first fan, a second gas turbine engine including a second input shaft driving a second gear system, a second fan driven by the second gear system, a second generator supported on the second input shaft and a second fan drive electric motor providing a drive input to the second fan and a controller controlling power output from each of the first and second generators and directing the power output between each of the first and second fan drive electric motors.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Daniel Bernard Kupratis, Frederick M. Schwarz, William G. Sheridan, Glenn Levasseur
  • Publication number: 20210324758
    Abstract: A system is provided for multi-engine coordination of gas turbine engine motoring in an aircraft. The system includes a controller operable to determine a motoring mode as a selection between a single engine dry motoring mode and a multi-engine dry motoring mode based on at least one temperature of a plurality of gas turbine engines and initiate dry motoring based on the motoring mode.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Subhradeep Chowdhury, David M. Bostwick, David Gelwan, Frederick M. Schwarz
  • Patent number: 11149643
    Abstract: A gas turbine engine has a fan rotor delivering air into a bypass duct defined between an outer fan case and an outer interior housing. The fan rotor also delivers air into a compressor section, a combustor, a turbine section. A chamber is defined between the outer interior housing and an inner housing. The inner housing contains the compressor section, the combustor and the turbine section. A first conduit taps hot compressed air to be cooled and passes the air to at least one heat exchanger. The air is cooled in the heat exchanger and returned to a return conduit. The return conduit passes the cooled air to at least one of the turbine section and the compressor section. The heat exchanger has a core exhaust plane. The turbine section has at least a first and a downstream second rotor blade row, with the core exhaust plane located downstream of a center plane of the second blade row.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: October 19, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Frederick M. Schwarz, Nathan Snape
  • Patent number: 11149644
    Abstract: A heat exchange module is provided for a turbine engine. The heat exchange module includes a duct and a plurality of heat exchangers. The duct includes a flowpath defined radially between a plurality of concentric duct walls. The flowpath extends along an axial centerline through the duct between a first duct end and a second duct end. The heat exchangers are located within the flowpath, and arranged circumferentially around the centerline.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: October 19, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Frederick M. Schwarz, John T. Schmitz
  • Patent number: 11149650
    Abstract: A turbofan engine according to an example of the present disclosure includes, among other things, a fan including a circumferential array of fan blades, a compressor in fluid communication with the fan, the compressor including a first compressor section and a second compressor, the second compressor section including a second compressor section inlet with a second compressor section inlet annulus area, a fan duct including a fan duct annulus area outboard of the second compressor section inlet, a shaft assembly having a first portion and a second portion, a turbine in fluid communication with the combustor, the turbine having a first turbine section coupled to the first portion of the shaft assembly to drive the first compressor section, and a second turbine section coupled to the second portion of the shaft assembly to drive the fan, an epicyclic transmission coupled to the fan and rotatable by the second turbine section through the second portion of the shaft assembly to allow the second turbine to turn fa
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: October 19, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Paul R. Adams, Shankar S. Magge, Joseph B. Staubach, Wesley K. Lord, Frederick M. Schwarz, Gabriel L. Suciu
  • Publication number: 20210301730
    Abstract: A turbofan engine according to an example of the present disclosure includes, among other things, a fan including a circumferential array of fan blades, a compressor in fluid communication with the fan, the compressor including a low pressure compressor section and a high pressure compressor section, the low pressure compressor section including a low pressure compressor section inlet with a low pressure compressor section inlet annulus area, a fan duct including a fan duct annulus area outboard of the a low pressure compressor section inlet, a turbine in fluid communication with the combustor, the turbine having a high pressure turbine section and a low pressure turbine that drives the fan, a speed reduction mechanism coupled to the fan and rotatable by the low pressure turbine section to allow the low pressure turbine section to turn faster than the fan, wherein the low pressure turbine section includes a maximum gas path radius and the fan blades include a maximum radius, and a ratio of the maximum gas pat
    Type: Application
    Filed: April 14, 2021
    Publication date: September 30, 2021
    Inventors: Paul R. Adams, Shankar S. Magge, Joseph B. Staubach, Wesley K. Lord, Frederick M. Schwarz, Gabriel L. Suciu
  • Publication number: 20210301731
    Abstract: A turbofan engine according to an example of the present disclosure includes, among other things, a fan including an array of fan blades rotatable about an engine axis, a compressor including a high pressure compressor section and a low pressure compressor section, the low pressure compressor section including a low pressure compressor section inlet with a low pressure compressor inlet annulus area, a fan duct including a fan duct annulus area outboard of the low pressure compressor section inlet, and a turbine having a high pressure turbine section and a low pressure turbine section driving the fan through a speed reduction mechanism, wherein the low pressure turbine section defines a maximum gas path radius and the fan blades define a maximum radius, and a ratio of the maximum gas path radius to the maximum radius of the fan blades is less than 0.6.
    Type: Application
    Filed: April 14, 2021
    Publication date: September 30, 2021
    Inventors: Paul R. Adams, Shankar S. Magge, Joseph B. Staubach, Wesley K. Lord, Frederick M. Schwarz, Gabriel L. Suciu
  • Publication number: 20210301765
    Abstract: A turbofan engine includes a fan section that drives air along a bypass flow path in a bypass duct. An epicyclic gear system in driving engagement with the fan shaft and has a gear mesh lateral stiffness and a gear mesh transverse stiffness. A gear system input to the gear system defines a gear system input lateral stiffness and a gear system input transverse stiffness. The gear system input lateral stiffness is less than 5% of the gear mesh lateral stiffness. A first performance quantity is defined as the product of a first speed squared and a first area and a second performance quantity is defined as the product of a second speed squared and a second area. A performance quantity ratio of a first performance quantity to a second performance quantity is between 0.5 and 1.5.
    Type: Application
    Filed: June 8, 2021
    Publication date: September 30, 2021
    Inventors: Michael E. McCune, Jason Husband, Frederick M. Schwarz, Daniel Bernard Kupratis, Gabriel L. Suciu, William K. Ackermann
  • Publication number: 20210293154
    Abstract: A turbofan gas turbine engine includes, among other things, a fan section including a fan hub and an outer housing, the fan hub including a hub diameter supporting a plurality of fan blades, a turbine section including a fan drive turbine, and a geared architecture that interconnects the fan drive turbine and the fan hub, the geared architecture including a gear volume.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Inventors: Frederick M. Schwarz, William G. Sheridan
  • Patent number: 11125155
    Abstract: A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section including a fan having a plurality of fan blades, and a nacelle surrounding the plurality of fan blades, a compressor section including a low pressure compressor and a high pressure compressor, the low pressure compressor including a plurality of stages, and the high pressure compressor including 6 or more stages. A turbine section includes a fan drive turbine that drives the fan section through a gear arrangement, and including a second turbine that drives the high pressure compressor. A power ratio is provided by the combination of a first power input of the low pressure compressor and a second power input of the high pressure compressor, the power ratio defined by the second power input divided by the first power input, and the power ratio is less than or equal to 1.0.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: September 21, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Daniel Bernard Kupratis, Frederick M. Schwarz
  • Patent number: 11105221
    Abstract: A method of sizing a heat exchanger for a geared architecture gas turbine engine includes sizing a minimum frontal area of at least one heat exchanger located in communication with a fan bypass airflow such that a ratio of waste heat area to horsepower generation characteristic area is between 1.6 to 8.75.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 31, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Frederick M. Schwarz, Simon Pickford
  • Patent number: 11091272
    Abstract: An aircraft propulsion system is disclosed and includes a first gas turbine engine including a first input shaft driving a first gear system, a first fan driven by the first gear system, a first generator supported on the first input shaft and a fan drive electric motor providing a drive input to the first fan, a second gas turbine engine including a second input shaft driving a second gear system, a second fan driven by the second gear system, a second generator supported on the second input shaft and a second fan drive electric motor providing a drive input to the second fan and a controller controlling power output from each of the first and second generators and directing the power output between each of the first and second fan drive electric motors.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: August 17, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Daniel Bernard Kupratis, Frederick M. Schwarz, William G. Sheridan, Glenn Levasseur
  • Publication number: 20210231025
    Abstract: A turbine engine according to an example of the present disclosure includes, among other things, a fan shaft, at least one tapered bearing mounted on the fan shaft, the fan shaft including at least one passage extending in a direction having at least a radial component, and adjacent the at least one tapered bearing, a fan mounted for rotation on the at least one tapered bearing. An epicyclic gear train is coupled to drive the fan, the epicyclic gear train including a carrier supporting intermediate gears that mesh with a sun gear, and a ring gear surrounding and meshing with the intermediate gears, wherein the epicyclic gear train defines a gear reduction ratio of greater than or equal to 2.3. A turbine section is coupled to drive the fan through the epicyclic gear train, the turbine section having a fan drive turbine that includes a pressure ratio that is greater than 5. The fan includes a pressure ratio that is less than 1.45, and the fan has a bypass ratio of greater than ten (10).
    Type: Application
    Filed: January 11, 2021
    Publication date: July 29, 2021
    Inventors: Michael E. McCune, Lawrence E. Portlock, Frederick M. Schwarz