Patents by Inventor Frederick Scott Schollenberger

Frederick Scott Schollenberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230341248
    Abstract: A meter electronics (20) for using a stiffness measurement to compensate a fluid property measurement is provided. The meter electronics (20) comprises an interface (601) configured to communicatively couple to a sensor assembly (10) and receive sensor signals from the sensor assembly (10), and a processing system (602) communicatively coupled to the interface (601). The processing system (602) is configured to determine a fluid property value based on the sensor signals and correct the fluid property value with a fluid property correction value, the fluid property correction value being correlated with a current stiffness value of the sensor assembly.
    Type: Application
    Filed: July 14, 2020
    Publication date: October 26, 2023
    Applicant: MICRO MOTION, INC.
    Inventor: Frederick Scott SCHOLLENBERGER
  • Publication number: 20230073402
    Abstract: A mode splitter (300) for a balance bar (150) of a Coriolis flow meter (100) is disclosed. The mode splitter (300) comprises a mass portion (302), and a first coupling portion (304a) coupled to the mass portion (302). The first coupling portion (304a) has a first stiffness in a drive direction (Y) and a second stiffness direction in an orthogonal direction (Z), and the orthogonal direction (Z) is orthogonal to both the drive direction (Y) and a longitudinal direction of the balance bar (150). The second stiffness is different than the first stiffness.
    Type: Application
    Filed: February 20, 2020
    Publication date: March 9, 2023
    Applicant: MICRO MOTION, INC.
    Inventors: Martin Andrew SCHLOSSER, Frederick Scott SCHOLLENBERGER
  • Publication number: 20220299350
    Abstract: An embodiment of a fin sensor is disclosed. The embodiment of the fin sensor has a base, the base coupled to a first fin and a second fin, the fin sensor further having at least two transducers coupled to the fins, the first fin being coupled to the second fin by at least one fin coupler.
    Type: Application
    Filed: August 20, 2019
    Publication date: September 22, 2022
    Applicant: MICRO MOTION, INC.
    Inventors: Martin Andrew SCHLOSSER, Frederick Scott SCHOLLENBERGER, Joel WEINSTEIN
  • Patent number: 10900348
    Abstract: Coriolis direct wellhead measurement devices and methods are provided. The devices and methods allow for continuous monitoring, more frequent data, and greater accuracy in quantitative and qualitative measurements of well performance. In an embodiment: an entrained gas severity of a wellhead is determined based on a determined drive gain threshold, at least one variable is output based on the determined entrained gas severity, and a respective confidence indicator correlating to the at least one variable is output. One mode of operation includes continually averaging the at least one variable over a predetermined time interval and outputting a respective single averaged data value. Another mode of operation includes outputting at least one instantaneous variable at predetermined and uniform time intervals. Diagnostic information and user alerts are also output to provide reliable decision making information to an operator.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: January 26, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Joel Weinstein
  • Patent number: 10718649
    Abstract: A vibratory meter (5) including a multi-channel flow tube (130) is provided. The vibratory meter (5) includes a meter electronics (20) and a meter assembly (10) communicatively coupled to the meter electronics (20). The meter assembly (10) includes the multi-channel flow tube (130, 330, 430, 530) comprising two or more fluid channels (132, 332, 432, 532) surrounded by a tube wall (134, 334, 434, 534). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) comprise a single integral structure. A driver (180) is coupled to the multi-channel flow tube (130, 330, 430, 530). The driver (180) is configured to vibrate the multi-channel flow tube (130, 330, 430, 530). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) are configured to deform in the same direction as the single integral structure in response to a drive signal applied to the driver (180).
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 21, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Martin Andrew Schlosser, Frederick Scott Schollenberger
  • Publication number: 20200182675
    Abstract: A method and apparatus for operating a flowmeter (5) is provided. A process fluid is placed in the flowmeter (5). A measured mass flow rate (221) of the process fluid is determined. The process fluid is totalized. A first flowmeter parameter is measured. The measured mass flow rate (221) is set to zero if the first flowmeter parameter differs from a pre-determined threshold by a predetermined amount, and totalizing is halted if the first flowmeter parameter differs from a predetermined threshold by a predetermined amount.
    Type: Application
    Filed: August 8, 2017
    Publication date: June 11, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Joel WEINSTEIN, Frederick Scott SCHOLLENBERGER
  • Patent number: 10641633
    Abstract: A method for operating a vibratory flowmeter (5) is provided. The method includes placing a process fluid in the vibratory meter (5) and measuring entrained gas in the process fluid. A measurement confidence level is determined for at least one operating variable.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: May 5, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Joel Weinstein
  • Patent number: 10620027
    Abstract: A meter electronics (20) for a flowmeter (5) configured to receive a process fluid is provided. The meter electronics (20) includes an interface (201) configured to communicate with a flowmeter assembly of the flowmeter (5) and to receive a vibrational response. The meter electronics (20) comprises a drive gain threshold determination routine (215) configured to determine a first predetermined drive gain threshold (302), monitor a drive gain signal over a predetermined time period, and determine lowest points in the drive gain signal over the predetermined time period. A second drive gain threshold is determined based upon reaching a predetermined number of instances of low points of the drive gain signal.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: April 14, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Joel Weinstein
  • Publication number: 20190128719
    Abstract: A vibratory meter (5) including a multi-channel flow tube (130) is provided. The vibratory meter (5) includes a meter electronics (20) and a meter assembly (10) communicatively coupled to the meter electronics (20). The meter assembly (10) includes the multi-channel flow tube (130, 330, 430, 530) comprising two or more fluid channels (132, 332, 432, 532) surrounded by a tube wall (134, 334, 434, 534). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) comprise a single integral structure. A driver (180) is coupled to the multi-channel flow tube (130, 330, 430, 530). The driver (180) is configured to vibrate the multi-channel flow tube (130, 330, 430, 530). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) are configured to deform in the same direction as the single integral structure in response to a drive signal applied to the driver (180).
    Type: Application
    Filed: May 16, 2016
    Publication date: May 2, 2019
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Martin Andrew SCHLOSSER, Frederick Scott SCHOLLENBERGER
  • Patent number: 9976890
    Abstract: A flowmeter is provides that includes a sensor assembly and meter electronics. The flowmeter comprises one or more rigid flow tubes, a driver coupled to the flow tubes that is oriented to induce a drive mode vibration in the flow tubes. Two or more strain gages are coupled to the one or more rigid flow tubes and oriented to sense tension and compression of the flow tubes. One or more bridge circuits is in electrical communication with the two or more strain gages, wherein outputs of the bridge circuits are proportional to a strain detected by at least one of the strain gages.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: May 22, 2018
    Assignee: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Martin Andrew Schlosser
  • Publication number: 20180038724
    Abstract: A meter electronics (20) for a flowmeter (5) configured to receive a process fluid is provided. The meter electronics (20) includes an interface (201) configured to communicate with a flowmeter assembly of the flowmeter (5) and to receive a vibrational response. The meter electronics (20) comprises a drive gain threshold determination routine (215) configured to determine a first predetermined drive gain threshold (302), monitor a drive gain signal over a predetermined time period, and determine lowest points in the drive gain signal over the predetermined time period. A second drive gain threshold is determined based upon reaching a predetermined number of instances of low points of the drive gain signal.
    Type: Application
    Filed: January 6, 2016
    Publication date: February 8, 2018
    Applicant: MICRO MOTION, INC
    Inventors: Frederick Scott SCHOLLENBERGER, Joel Weinstein
  • Publication number: 20180003538
    Abstract: A method for operating a vibratory flowmeter (5) is provided. The method includes placing a process fluid in the vibratory meter (5) and measuring entrained gas in the process fluid. A measurement confidence level is determined for at least one operating variable.
    Type: Application
    Filed: January 6, 2016
    Publication date: January 4, 2018
    Applicant: Micro Motion, Inc.
    Inventors: Frederick Scott SCHOLLENBERGER, Joel WEINSTEIN
  • Publication number: 20170082473
    Abstract: A flowmeter is provides that includes a sensor assembly and meter electronics. The flowmeter comprises one or more rigid flow tubes, a driver coupled to the flow tubes that is oriented to induce a drive mode vibration in the flow tubes. Two or more strain gages are coupled to the one or more rigid flow tubes and oriented to sense tension and compression of the flow tubes. One or more bridge circuits is in electrical communication with the two or more strain gages, wherein outputs of the bridge circuits are proportional to a strain detected by at least one of the strain gages.
    Type: Application
    Filed: April 7, 2014
    Publication date: March 23, 2017
    Applicant: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Martin Andrew Schlosser
  • Publication number: 20160245074
    Abstract: Coriolis direct wellhead measurement devices and methods are provided. The devices and methods allow for continuous monitoring, more frequent data, and greater accuracy in quantitative and qualitative measurements of well performance. In an embodiment: an entrained gas severity of a wellhead is determined based on a determined drive gain threshold, at least one variable is output based on the determined entrained gas severity, and a respective confidence indicator correlating to the at least one variable is output. One mode of operation includes continually averaging the at least one variable over a predetermined time interval and out-putting a respective single averaged data value. Another mode of operation includes outputting at least one instantaneous variable at predetermined and uniform time intervals. Diagnostic information and user alerts are also output to provide reliable decision making information to an operator.
    Type: Application
    Filed: November 14, 2013
    Publication date: August 25, 2016
    Applicant: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Joel Weinstein
  • Patent number: 9383242
    Abstract: A method for determining fluid characteristics of a multicomponent fluid is provided. The method includes a step of measuring a first density, ?1, of a multicomponent fluid comprising one or more incompressible components and one or more compressible components at a first density state. The method further includes a step of adjusting the multicomponent fluid from the first density state to a second density state. A second density, ?2, of the multicomponent fluid is then measured at the second density state and one or more fluid characteristics of at least one of the compressible components or the incompressible components are determined.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: July 5, 2016
    Assignee: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Joel Weinstein, David John Shepherd
  • Publication number: 20150160056
    Abstract: A method for determining fluid characteristics of a multicomponent fluid is provided. The method includes a step of measuring a first density, ?1, of a multicomponent fluid comprising one or more incompressible components and one or more compressible components at a first density state. The method further includes a step of adjusting the multicomponent fluid from the first density state to a second density state. A second density, ?2, of the multicomponent fluid is then measured at the second density state and one or more fluid characteristics of at least one of the compressible components or the incompressible components are determined.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 11, 2015
    Applicant: Micro Motion, Inc.
    Inventors: Frederick Scott Schollenberger, Joel Weinstein, David John Shepherd