Patents by Inventor Frederick T. Wagner

Frederick T. Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9722257
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: August 1, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Patent number: 9614236
    Abstract: A fuel cell system that employs a process for minimizing corrosion in the cathode side of a fuel cell stack in the system by combining cathode re-circulation and stack short-circuiting at system shut-down and start-up.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: April 4, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul Taichiang Yu, Frederick T. Wagner
  • Patent number: 9287569
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: March 15, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Patent number: 9281536
    Abstract: A fuel cell including at least one of a hydrophilic interlayer and a flow field treated to impart hydrophilic properties is disclosed, wherein the hydrophilic interlayer and the treated flow field militate against water accumulation in ultrathin electrodes of the fuel cell, particularly for cool-start operating conditions (i.e. about 0° C. to about 60° C.).
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: March 8, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Patent number: 9034530
    Abstract: A system and method for increasing the temperature of a fuel cell stack quickly, especially at cold stack start-up. The method includes determining whether the fuel cell stack is below a first predetermined temperature threshold, and, if so, starting a cooling fluid flow through the stack and engaging a shorting circuit across the stack to short circuit the stack and cause the stack to operate inefficiently. The method then determines a desired heating rate of the fuel cell stack and calculates a cathode airflow to the fuel cell stack based on the desired heating rate. The method reduces the flow of cathode air to the stack if a minimum cell voltage is below a predetermined minimum cell voltage threshold and disengages the shorting circuit and applies vehicle loads to the stack when the stack temperature reaches a predetermined second temperature threshold.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: May 19, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Derek R Lebzelter, Balasubramanian Lakshmanan, Frederick T. Wagner
  • Patent number: 8940461
    Abstract: A method of coating carbon based electrodes and thick electrodes without mud-cracking is described. The electrode ink is deposited on a decal substrate, and transferred to a hot press before the electrode ink is completely dried. The partially dried electrode ink is hot pressed to the membrane to form a membrane electrode assembly. A membrane electrode assembly including a polymer membrane; and a pair of crack-free electrode layers on opposite sides of the polymer membrane, each of the pair of electrode layers having a thickness of at least about 50 ?m is also described.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: January 27, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Junliang Zhang, Matthew Dioguardi, Frederick T. Wagner
  • Patent number: 8828616
    Abstract: A fuel cell system that employs a technique for reducing or significantly eliminating the MEA degradation that occurs as a result of the hydrogen-air front in the anode flow channels at system start-up. After system shut-down, any hydrogen remaining within the anode flow channels will be quickly reacted or diffused. At the next start-up, a switch is closed to provide a dead short across the positive and negative terminals of the fuel cell stack as hydrogen is being introduced into the anode flow channels. The existing air in the cathode flow channels reacts with the hydrogen being introduced across the membrane in the normal fuel cell reaction. However, the short prevents a voltage potential across the membrane.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Clark G. Hochgraf, Paul Taichiang Yu, Frederick T. Wagner, Robert S. Foley
  • Patent number: 8735023
    Abstract: One embodiment includes at least one of the anode and cathode of a fuel cell comprises a first layer and a second layer in intimate contact with each other. Both the first layer and the second layer comprise a catalyst capable of catalyzing an electrochemical reaction of a reactant gas. The second layer has a higher porosity than the first layer. A membrane electrode assembly (MEA) based on the layered electrode configuration and a process of making a fuel cell are also described.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 27, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Patent number: 8647723
    Abstract: A method to achieve a conformal ultrathin film of platinum or one of its alloys on a substrate that can be economically used as a heterogeneous catalyst, such as automotive polymer electrolyte membrane (PEM) fuel cell catalyst. The method includes using a hydrogen plasma in platinum atomic layer deposition along with tungsten as a substrate or anchoring adhesive layer to assist platinum nucleation and deposition.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 11, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anusorn Kongkanand, Frederick T. Wagner, Steven M. George, Layton Baker
  • Patent number: 8492046
    Abstract: A method of operating the fuel cell stack having an anode side and a cathode side by flowing hydrogen into the anode side and flowing air into the cathode side. The fuel cell produces electricity that is used to operate a primary electrical device. To shut down the stack in one embodiment, the primary electrical device is disconnected from the stack. The flow of air into the cathode side is stopped and positive hydrogen pressure is maintained on the anode side. The fuel cell stack is shorted and oxygen in the cathode side is allowed to be consumed by hydrogen. The inlet and outlet valves of the anode and the cathode sides are closed. Thereafter, the flow of hydrogen into the anode side is stopped and the flow of exhaust from the cathode side is stopped.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 23, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul Taichiang Yu, Frederick T. Wagner, Glenn W. Skala, Balsu Lakshmanan, John P. Salvador
  • Patent number: 8231773
    Abstract: A method of treating electrically conductive nanoparticles using a dynamic processing electrochemical cell.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: July 31, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Junliang Zhang, Susan G. Yan, Frederick T. Wagner
  • Publication number: 20120100301
    Abstract: A method to achieve a conformal ultrathin film of platinum or one of its alloys on a substrate that can be economically used as a heterogeneous catalyst, such as automotive polymer electrolyte membrane (PEM) fuel cell catalyst. The method includes using a hydrogen plasma in platinum atomic layer deposition along with tungsten as a substrate or anchoring adhesive layer to assist platinum nucleation and deposition.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 26, 2012
    Applicants: THE REGENTS OF THE UNIVERSITY OF COLORADO, GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anusorn Kongkanand, Frederick T. Wagner, Steven M. George, Layton Baker
  • Patent number: 8058204
    Abstract: An electrocatalyst is described. The electrocatalyst includes a core of a non-noble metal or non-noble metal alloy; and a continuous shell of a noble metal or noble metal alloy on the core, the continuous shell being at least two monolayers of the noble metal or noble metal alloy. Methods for making the electrocatalyst are also described.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: November 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Junliang Zhang, Frederick T. Wagner, Zhongyi Liu, Michael K. Carpenter
  • Patent number: 8043759
    Abstract: A product includes a fuel cell stack, and an enclosure apparatus sealingly enclosing the fuel cell stack to define a hydrogen chamber between the fuel cell stack and the enclosure apparatus. An operation of the product may include maintaining a positive pressure of hydrogen in the hydrogen chamber.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: October 25, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Jingxin Zhang, Hubert A. Gasteiger, Paul Taichiang Yu, Frederick T. Wagner, Steven G. Goebel
  • Publication number: 20110236788
    Abstract: A method of coating carbon based electrodes and thick electrodes without mud-cracking is described. The electrode ink is deposited on a decal substrate, and transferred to a hot press before the electrode ink is completely dried. The partially dried electrode ink is hot pressed to the membrane to form a membrane electrode assembly. A membrane electrode assembly including a polymer membrane; and a pair of crack-free electrode layers on opposite sides of the polymer membrane, each of the pair of electrode layers having a thickness of at least about 50 ?m is also described.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Junliang Zhang, Matthew Dioguardi, Frederick T. Wagner
  • Patent number: 8025861
    Abstract: Titanium oxide (usually titanium dioxide) catalyst support particles are doped for electronic conductivity and formed with surface area-enhancing pores for use, for example, in electro-catalyzed electrodes on proton exchange membrane electrodes in hydrogen/oxygen fuel cells. Suitable compounds of titanium and a dopant are dispersed with pore-forming particles in a liquid medium. The compounds are deposited as a precipitate or sol on the pore-forming particles and heated to transform the deposit into crystals of dopant-containing titanium dioxide. If the heating has not decomposed the pore-forming particles, they are chemically removed from the, now pore-enhanced, the titanium dioxide particles.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 27, 2011
    Assignees: GM Global Technology Operations LLC, Administrators of the Tulane Educational Fund
    Inventors: Mei Cai, Yunfeng Lu, Zhiwang Wu, Lee Lizhong Feng, Martin S. Ruthkosky, John T. Johnson, Frederick T. Wagner
  • Publication number: 20110143254
    Abstract: One embodiment includes at least one of the anode and cathode of a fuel cell comprises a first layer and a second layer in intimate contact with each other. Both the first layer and the second layer comprise a catalyst capable of catalyzing an electrochemical reaction of a reactant gas. The second layer has a higher porosity than the first layer. A membrane electrode assembly (MEA) based on the layered electrode configuration and a process of making a fuel cell are also described.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Publication number: 20110143257
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Application
    Filed: March 8, 2010
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Publication number: 20110143256
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Patent number: 7799475
    Abstract: A method of fuel cell shutdown and start-up is provided. The method of shutdown includes introducing hydrogen gas into the cathode passages to purge a cathode gas from the cathode passages, then introducing air through the cathode and anode passages to remove water droplets and vapor from the fuel cell stacks. The method from fuel cell start-up includes introducing hydrogen gas into the anode and cathode passages to consume/purge oxygen in both the anode and cathode passages, and then introducing a cathode gas into the cathode passages. The introduction of hydrogen into the cathode passages in both the shutdown and start-up procedures allow a rapid draw down of the anode/cathode open circuit voltage and avoids providing a hydrogen/air front while the cathode is filled with air.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: September 21, 2010
    Inventors: Paul Taichiang Yu, Frederick T Wagner