Patents by Inventor Frederick Wilson Wheeler

Frederick Wilson Wheeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337647
    Abstract: A system receives a plurality of data samples associated with a control valve with each of the plurality of data samples associated with a setpoint and a position. A first subset of the data samples that are in a control zone associated with normal operation of the control valve is determined. In a case that a second subset of the data samples are determined to be (i) not in the first subset and (ii) close to a minimum position of the plurality of data samples and (iii) have setpoints less than their associated positions, an alert associated with a low obstruction is indicated. In a case that a second subset of the data samples are determined to be (i) not in the first subset and (ii) close to the maximum position of the plurality of data samples and (iii) have setpoint greater than their associated position, an alert is indicated.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: July 2, 2019
    Assignee: General Electric Company
    Inventors: Frederick Wilson Wheeler, Justin Scott Shriver, Larry Gene Schoonover, Brett Alexander Matthews
  • Publication number: 20190134821
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 10275402
    Abstract: According to some embodiments, a signal processing unit may receive distributed acoustic sensing data associated with a first set of a plurality of pipeline locations. The signal processing unit may also receive collected physical data representing a physical characteristic of a second set of a plurality of pipeline locations. The signal processing unit may then utilize a pipeline model having the distributed acoustic sensing data and collected physical data as inputs to automatically generate at least one alert indicating an increased probability of damage to the pipeline.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: April 30, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Marco Guerriero, Frederick Wilson Wheeler, Glen Peter Koste, Sachin Narahari Dekate, Peter Henry Tu
  • Patent number: 10234057
    Abstract: A method to detect cycling of components that result from use of a tight shut-off mode on a valve assembly. Embodiments of the method use operating data from the valve assembly. This operating data includes data that reflects a position for the closure member relative to the seat. This position often corresponds with a measured position of one or more components (e.g., the valve stem) on the valve assembly. In one embodiment, the method includes steps for comparing the measured position to a boundary criteria that defines one or more boundary values proximate, and often equal to, the threshold levels of the tight shut-off mode. The method can also includes steps for identifying patterns in the data that indicate that the closure member is cycling from its closed position to a second position due to tight shut-off mode.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 19, 2019
    Assignee: Dresser, LLC
    Inventors: Robert Claude Prescott, Justin Scott Shriver, Frederick Wilson Wheeler
  • Publication number: 20180363632
    Abstract: A method for evaluating performance of a wind turbine includes operating the wind turbine in a first operational mode. The method also includes generating a first set of operational data relating to the first operational mode. More specifically, the first set of operational data includes, at least, a first parameter and a second parameter. Further, the first and second parameters of the first set are measured during different time periods during the first operational mode. The method further includes changing the first operational mode to a second operational mode. Moreover, the method includes generating a second set of operational data relating to the second operational mode. The second set of operational data also includes, at least, a first parameter and a second parameter. Thus, the method includes determining a performance characteristic of the first and second operational modes based on the first and second sets of operational data.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Frederick Wilson Wheeler, Danian Zheng, James Huu Phan, Brian Allen Rittenhouse
  • Patent number: 10139376
    Abstract: A system to monitor a composite system component may include a plurality of sensors mounted proximate to the composite system component. A signal processing unit may receive, from each of the plurality of sensors, a series of sensed values associated with the composite system component and determine a kurtosis value for each series of sensed values. A threshold exceedance detector may detect if at least one of the kurtosis values exceeds a pre-determined threshold value. A delamination location estimation unit may calculate an estimated location of a composite system component delamination alert signal based on calculated time difference delay values of detected signal impulses in the series of sensed values using at least four of the plurality of sensors. A delamination alert output may then transmit a composite system component delamination alert signal, along with the estimated location, when at least one of the kurtosis values exceeds the pre-determined threshold.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 27, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John Erik Hershey, Frederick Wilson Wheeler
  • Patent number: 10054043
    Abstract: Systems and methods for estimating when an engine event occurs is described. The system includes a controller configured to receive a first signal from at least one knock sensor coupled to a combustion engine, receive a second signal from at least one engine crankshaft sensor coupled to the combustion engine, transform the first and second signals into a plurality of feature vectors using a multivariate transformation algorithm, determine an expected window of an engine event with a statistical model, center a segment of the plurality of feature vectors around the expected window, estimate, using the statistical algorithm, a time in the expected window corresponding to when the engine event occurred, and adjust operation of the combustion engine based on the time.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: August 21, 2018
    Assignee: General Electric Company
    Inventors: Brett Alexander Matthews, Jeffrey Jacob Bizub, Iyad Batal, Frederick Wilson Wheeler
  • Publication number: 20180065650
    Abstract: Systems for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
    Type: Application
    Filed: October 30, 2017
    Publication date: March 8, 2018
    Inventors: Yuri Alexeyevich Plotnikov, Brett Alexander Matthews, Ajith Kuttannair Kumar, Jeffrey Michael Fries, Joseph Forrest Noffsinger, Samhitha Palanganda Poonacha, Tannous Frangieh, Frederick Wilson Wheeler, Brian Lee Staton, Timothy Robert Brown, Gregory Boverman, Majid Nayeri
  • Patent number: 9857801
    Abstract: A method of performing online diagnostics for a valve includes receiving valve information while the valve is in operation. The valve information includes setpoint data and position data associated with the valve. The method further includes processing the setpoint data and the position data at a plurality of time intervals, and detecting an occurrence of a stick-slip based on the processing.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: January 2, 2018
    Assignee: General Electric Company
    Inventors: Frederick Wilson Wheeler, Robert Claude Prescott, Justin Shriver, Larry Schoonover
  • Patent number: 9834237
    Abstract: Systems and methods for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, apply a filter to the one or more electrical characteristics, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: December 5, 2017
    Assignee: General Electric Company
    Inventors: Yuri Alexeyevich Plotnikov, Brett Alexander Matthews, Ajith Kuttannair Kumar, Jeffrey Michael Fries, Joseph Forrest Noffsinger, Samhitha Palanganda Poonacha, Tannous Frangieh, Frederick Wilson Wheeler, Brian Lee Staton, Timothy Robert Brown, Gregory Boverman, Majid Nayeri
  • Patent number: 9802631
    Abstract: Systems for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 31, 2017
    Assignee: General Electric Company
    Inventors: Brett Alexander Matthews, Gregory Boverman, Yuri Alexeyevich Plotnikov, Frederick Wilson Wheeler, Majid Nayeri, Jeffrey Michael Fries
  • Patent number: 9804282
    Abstract: The approaches presently disclosed provide for fault-interpretation in a seismic volume with computer assistance, allowing automatic or semi-automatic determination of a fault surface and associated displacement across the fault. The present fault interpretation approach uses pattern matching algorithms and does not require prior interpretation of the stratigraphic horizons. In certain implementations the fault interpretation approach estimates the 3D fault surface as part of a joint fault surface location and displacement optimization process.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: October 31, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yi Xu, Frederick Wilson Wheeler, Ali Can
  • Publication number: 20170292630
    Abstract: A method to detect cycling of components that result from use of a tight shut-off mode on a valve assembly. Embodiments of the method use operating data from the valve assembly. This operating data includes data that reflects a position for the closure member relative to the seat. This position often corresponds with a measured position of one or more components (e.g., the valve stem) on the valve assembly. In one embodiment, the method includes steps for comparing the measured position to a boundary criteria that defines one or more boundary values proximate, and often equal to, the threshold levels of the tight shut-off mode. The method can also includes steps for identifying patterns in the data that indicate that the closure member is cycling from its closed position to a second position due to tight shut-off mode.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 12, 2017
    Inventors: Robert Claude Prescott, Justin Scott Shriver, Frederick Wilson Wheeler
  • Publication number: 20170284974
    Abstract: A system to monitor a composite system component may include a plurality of sensors mounted proximate to the composite system component. A signal processing unit may receive, from each of the plurality of sensors, a series of sensed values associated with the composite system component and determine a kurtosis value for each series of sensed values. A threshold exceedance detector may detect if at least one of the kurtosis values exceeds a pre-determined threshold value. A delamination location estimation unit may calculate an estimated location of a composite system component delamination alert signal based on calculated time difference delay values of detected signal impulses in the series of sensed values using at least four of the plurality of sensors. A delamination alert output may then transmit a composite system component delamination alert signal, along with the estimated location, when at least one of the kurtosis values exceeds the pre-determined threshold.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: John Erik HERSHEY, Frederick Wilson WHEELER
  • Publication number: 20170286572
    Abstract: An apparatus may implement a digital twin of a twinned physical system such that one or more sensors to sense values of one or more designated parameters of the twinned physical system. A computer processor may receive data associated with the sensors and, for at least a selected portion of the twinned physical system, monitor a condition of the selected portion of the twinned physical system and/or assess a remaining useful life of the selected portion based at least in part on the sensed values of the one or more designated parameters. A communication port may transmit information associated with a result generated by the computer processor. The one or more sensors may sense values of the one or more designated parameters, and the computer processor may perform the monitoring and/or assessing, when the twinned physical system is not operating.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: John Erik HERSHEY, Frederick Wilson WHEELER, Matthew Christian NIELSEN, Christopher Donald JOHNSON, Michael Joseph DELL'ANNO, Joij JOYKUTTI
  • Patent number: 9727671
    Abstract: In an example embodiment, a method of calculating end-of-life (EOL) predictions for a physical asset is provided. A state-space model for the physical asset is obtained, the state-space model being a physics-based model describing a state of the physical asset at a particular time given measurements or observations for the physical asset. Then a current state of the physical asset is inferred. Then a long-term prediction is derived for the physical asset based on the inferred current state of the physical asset and the state-space model for the physical asset. Then an EOL probability distribution function is generated for the physical asset based on the long-term prediction, the EOL probability distribution function describing a range of estimates of EOL for the physical asset and their corresponding confidence intervals.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: August 8, 2017
    Assignee: General Electric Company
    Inventors: Satish Giridhar Iyengar, John Anderson Fergus Ross, Frederick Wilson Wheeler, Naresh Sundaram Iyer, Paulo Ricardo dos Santos Mendonca, Ashok Sundaresan, Yujiao Zheng
  • Patent number: 9719610
    Abstract: A method to detect cycling of components that result from use of a tight shut-off mode on a valve assembly. Embodiments of the method use operating data from the valve assembly. This operating data includes data that reflects a position for the closure member relative to the seat. This position often corresponds with a measured position of one or more components (e.g., the valve stem) on the valve assembly. In one embodiment, the method includes steps for comparing the measured position to a boundary criteria that defines one or more boundary values proximate, and often equal to, the threshold levels of the tight shut-off mode. The method can also includes steps for identifying patterns in the data that indicate that the closure member is cycling from its closed position to a second position due to tight shut-off mode.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: August 1, 2017
    Assignee: Dresser, Inc.
    Inventors: Robert Claude Prescott, Justin Scott Shriver, Frederick Wilson Wheeler
  • Publication number: 20170199519
    Abstract: A system that provides localized monitoring of characteristics of instrument gas that a valve assembly uses to modulate the flow of a working fluid. The system includes components that generate an output in response to, for example, particulates, humidity, temperature, and other characteristics of the instrument gas. Processing of data and information in the output can help to diagnose changes in the characteristics of the instrument gas. This diagnosis is useful to predict a time frame during which the valve assembly and components associated therewith might fail and/or require maintenance before the valve assembly manifests significant problem that are detrimental to a process line.
    Type: Application
    Filed: March 28, 2017
    Publication date: July 13, 2017
    Inventors: Edward James Nieters, Frederick Wilson Wheeler, Harold Randall Smart
  • Patent number: 9638344
    Abstract: A system that provides localized monitoring of characteristics of instrument gas that a valve assembly uses to modulate the flow of a working fluid. The system includes components that generate an output in response to, for example, particulates, humidity, temperature, and other characteristics of the instrument gas. Processing of data and information in the output can help to diagnose changes in the characteristics of the instrument gas. This diagnosis is useful to predict a time frame during which the valve assembly and components associated therewith might fail and/or require maintenance before the valve assembly manifests significant problem that are detrimental to a process line.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: May 2, 2017
    Assignee: Dresser, Inc.
    Inventors: Edward James Nieters, Frederick Wilson Wheeler, Harold Randall Smart
  • Patent number: 9625900
    Abstract: A computer-implemented method for monitoring characteristic data includes selecting a first operable system device and receiving a first plurality of data from the first operable system device. The first plurality of data represents at least one characteristic of the first operable system device at a first plurality of points in time. The method also includes determining whether the first plurality of data is useful. If the data is useful, the method also includes receiving a second plurality of data from the first operable system device, the second plurality of data represents at least one characteristic of the first operable system device at a second plurality of points in time, wherein the second plurality of points in time is substantially larger than the first plurality of points in time. If the data is not useful, the method further includes selecting a second operable system device.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 18, 2017
    Assignee: General Electric Company
    Inventors: Brett Alexander Matthews, Frederick Wilson Wheeler, Robert Claude Prescott, Justin Shriver