Patents by Inventor Frederick Y. Lo

Frederick Y. Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100280298
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g., a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 7816574
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Patent number: 7816573
    Abstract: The invention relates to a process for converting hydrocarbons with a catalyst comprising a crystalline molecular sieve composition which is obtainable by crystallizing a pre-formed extrudate mixture in a reactor and, during crystallization, removing excess alkali metal hydroxide from the pre-formed extrudate. The pre-formed extrudate mixture comprises at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X. The reaction mixture has the following mole composition: Y:X2=10 to infinity; OH?:Y=0.001 to 2; and M+:Y=0.001 to 2; wherein M is an alkali metal. The amount of water in the mixture is at least sufficient to permit extrusion of said reaction mixture.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih Frank Lai, Robert Ellis Kay, Christine N. Elia, Frederick Y. Lo, David O. Marler
  • Patent number: 7790940
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g. a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g. MCM-49, or a mixture thereof.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 7, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 7737313
    Abstract: A catalyst composition comprises (a) a MCM-22 family molecular sieve; and (b) a binder, wherein the MCM-22 family molecular sieve is characterized by an average crystal agglomerate size of less than or equal to 16 microns. The catalyst composition may further have a second molecular sieve having a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 15, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Michael C. Clark, C. Morris Smith, Michael Hryniszak, Mohan Kalyanaraman
  • Publication number: 20100037773
    Abstract: A process and system for removing polar components from a process stream in a refinery process without cooling the process stream are disclosed. The process stream is fed to a first adsorber unit to remove contaminants containing sulfur from the process stream. The process stream is processed within the first adsorber unit to remove sulfur containing contaminants. The process stream is processed with the first adsorber unit at substantially the same elevated temperature. The process stream is processed within the first adsorber unit by exposing the process stream to at least one of a metal oxide and a mixed metal oxide to remove the sulfur containing contaminants from the process stream and produce a metal sulfide and a desulfurized process stream. The metal sulfide may be exposed to a stream of oxygen to regenerate the at least one of a metal oxide and a mixed metal oxide.
    Type: Application
    Filed: August 7, 2009
    Publication date: February 18, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bhupender S. MINHAS, Frederick Y. LO, Ian A. CODY, Donald E. STRATTON
  • Publication number: 20100036184
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Application
    Filed: December 20, 2007
    Publication date: February 11, 2010
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Publication number: 20090306446
    Abstract: A process for producing a monoalkylated aromatic compound in an alkylation reaction zone, said process comprising the steps of: (a) providing a first catalytic particulate material having a ratio of surface area over surface volume ratio greater than about 79 cm?1, (b) providing said alkylation reaction zone with an alkylatable aromatic compound, an alkylating agent, and said first catalytic particulate material; and (c) contacting said alkylatable aromatic compound and said alkylating agent with said catalytic particulate material in said alkylation reaction zone maintained under alkylation conditions, to form a product comprised of said monoalkylated aromatic compound and polyalkylated aromatic compound(s).
    Type: Application
    Filed: April 17, 2007
    Publication date: December 10, 2009
    Applicant: EXXONMOBIL CHEMICAL PATENTS INC.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Yun-Feng Chang
  • Publication number: 20080319242
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g. a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g. MCM-49, or a mixture thereof.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Publication number: 20080194897
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Application
    Filed: January 25, 2008
    Publication date: August 14, 2008
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Mathew J. Vincent
  • Publication number: 20080154081
    Abstract: A catalyst composition comprises (a) a MCM-22 family molecular sieve; and (b) a binder, wherein the MCM-22 family molecular sieve is characterized by an average crystal agglomerate size of less than or equal to 16 microns. The catalyst composition may further have a second molecular sieve having a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Christine N. Elia, Frederick Y. Lo, Michael C. Clark, Morris C. Smith, Michael Hryniszak, Mohan Kalyanaraman
  • Patent number: 7390933
    Abstract: In a process for reducing the Bromine Index of a feed containing a linear alkylbenzene and bromine-reactive olefinic hydrocarbon contaminants, the feed is contacted under conditions effective to remove bromine-reactive olefinic hydrocarbon contaminants with a catalyst comprising zeolite Y catalyst having an alpha value of about 2 to about 30. The feed will normally also contain benzene and linear paraffin remaining from the alkylation process used to produce the linear alkylbenzene.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 24, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frederick Y. Lo, David L. Stern, Ronald J. Cimini, James L. Propp
  • Patent number: 7381676
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: June 3, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Publication number: 20070191659
    Abstract: The invention relates to a crystalline molecular sieve composition which is obtainable by crystallizing a pre-formed extrudate mixture in a reactor and, during crystallization, removing excess alkali metal hydroxide from the pre-formed extrudate. The pre-formed extrudate mixture comprises at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X. The reaction mixture has the following mole composition: Y:X2=10 to infinity; OH?:Y=0.001 to 2; and M+:Y=0.001 to 2; wherein M is an alkali metal. The amount of water in the mixture is at least sufficient to permit extrusion of said reaction mixture.
    Type: Application
    Filed: January 26, 2007
    Publication date: August 16, 2007
    Inventors: Wenyih Frank Lai, Robert Ellis Kay, Christine N. Elia, Frederick Y. Lo, David O. Marler
  • Patent number: 7214840
    Abstract: In a process for reducing the Bromine Index of a feed containing a linear alkylbenzene and bromine-reactive olefinic hydrocarbon contaminants, the feed is contacted under conditions effective to remove bromine-reactive olefinic hydrocarbon contaminants with a catalyst comprising zeolite Y catalyst having an alpha value of about 2 to about 30. The feed will normally also contain benzene and linear paraffin remaining from the alkylation process used to produce the linear alkylbenzene.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 8, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frederick Y. Lo, David L. Stern, Ronald J. Cimini, James L. Propp
  • Patent number: 5883203
    Abstract: In gas phase polymerizations and copolymerizations of ethylene, reagents or cofeeds control the molecular weight, expressed as MI (wherein MI is measured according to ASTM D-1238 Condition E), of the resin product. Use of isopentane and electron donating compounds decrease MI; whereas, electron withdrawing compounds increase MI.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: March 16, 1999
    Assignee: Mobil Oil Coporation
    Inventors: Subrahmanyam Cheruvu, Frederick Y. Lo, Shih-May Christine Ong
  • Patent number: 5608019
    Abstract: In gas phase polymerizations and copolymerizations of ethylene, temperature controls the molecular weight, expressed as MI (wherein MI is measured according to ASTM D-1238 Condition E), of the resin product. Increase in polymerization temperature produces decrease in MI; whereas, decrease in polymerization temperature produces increase in MI.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: March 4, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Subrahmanyam Cheruvu, Frederick Y. Lo
  • Patent number: 5602067
    Abstract: A support containing methylalumoxane and derivatives thereof is described which is formed by an incipient impregnation technique. The most preferred support is silica. Incipient impregnation in accordance with the invention provides a supported alumoxane, methylalumoxane, which substantially eliminates the problem of fluidized bed reactor fouling when methylalumoxane is introduced into the reactor during its operation. In accordance with the invention, the process comprises providing methylalumoxane activated metallocene compound in particulate form as catalysts in fluidized bed gas phase operation.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: February 11, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Thomas E. Nowlin, Frederick Y. Lo, Ronald S. Shinomoto, Pradeep P. Shirodkar
  • Patent number: 5498582
    Abstract: A catalyst precursor is formed by providing in slurry: (1) a carrier, which is porous and in the form of particles, or spheres, preferably particles of a crosslinked polymer, having a particle diameter of about 1 to about 300 microns, a porosity of about 0.001 to about 10 cc/gm, and a surface area of about 1 to about 1,000 m.sup.2 /gm; (2) a metallocene complex having an empirical formulaCp.sub.m MA.sub.n B.sub.pin which Cp is an unsubstituted or substituted cyclopentadienyl group, M is zirconium, titanium, or hafnium; m is 1, 2, or 3 and each of A and B is a halogen atom, hydrogen or an alkyl group, and (3) an anion forming reagent comprising either a borate complex or a borane. An alkyl aluminum compound is used in conjunction with the catalyst as either a cocatalyst or an impurity scavenger.
    Type: Grant
    Filed: December 6, 1993
    Date of Patent: March 12, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Michael J. Krause, Frederick Y. Lo, Steven M. Chranowski
  • Patent number: 5473028
    Abstract: A support containing methylalumoxane and derivatives thereof is described which is formed by an incipient impregnation technique. The most preferred support is silica. Incipient impregnation in accordance with the invention provides a supported alumoxane, methylalumoxane, which substantially eliminates the problem of fluid bed reactor fouling when methylalumoxane is introduced into the reactor during its operation. The process comprises providing methylaluminoxane in particulate form for use as a catalytic component in the fluidized bed gas phase polymerization process.In accordance with the invention, the process comprises providing methylalumoxane activated metallocene compound in particulate form as catalysts in fluid bed gas phase.
    Type: Grant
    Filed: April 19, 1994
    Date of Patent: December 5, 1995
    Assignee: Mobil Oil Corporation
    Inventors: Thomas E. Nowlin, Frederick Y. Lo, Ronald S. Shinomoto, Pradeep P. Shirodkar