Patents by Inventor Frederik ANTE

Frederik ANTE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230228849
    Abstract: A lidar sensor. The lidar sensor includes a light source and a fly eye lens arrangement having a first microlens arrangement and a second microlens arrangement. The first microlens arrangement comprises a plurality of identical first microlenses stacked along a first axis. The second microlens arrangement comprises a plurality of identical second microlenses stacked along a second axis. The fly-eye lens arrangement is configured to generate, based on a light generated by the light source, a scanning beam for scanning an environment of the lidar sensor. The scanning beam includes a first sub-beam generated by the first microlens arrangement and a second sub-beam generated by the second microlens arrangement. Predefined optical properties of the first microlens arrangement and predefined optical properties of the second microlens arrangement differ from one another in order to generate a scanning beam having a predefined light intensity distribution.
    Type: Application
    Filed: January 18, 2023
    Publication date: July 20, 2023
    Inventors: Albert Groening, Andre Albuquerque, Frederik Ante, Stefan Spiessberger
  • Publication number: 20230126182
    Abstract: A LIDAR system. The LIDAR system includes a light source and a bandpass filter which is situated in a reception path of the LIDAR system. The reception path being configured to receive light emitted by the light source which was reflected in surroundings of the LIDAR system. A spectral transmission width of the bandpass filter is configured to be narrower than a spectral emission width of a light beam emitted by the light source. A vehicle, which includes a LIDAR system, is also provided.
    Type: Application
    Filed: March 12, 2021
    Publication date: April 27, 2023
    Inventors: Frederik Ante, Markus Hippler, Markus Kienzle, Remigius Has, Stefan Spiessberger
  • Patent number: 11579251
    Abstract: A coaxial LiDAR system having a reduced adjustment complexity and reduced installation space includes a transmitter unit designed to emit LiDAR radiation, a receiver unit designed to detect incident LiDAR radiation, and an optical system for imaging LiDAR radiation, the radiation emitted by the transmitter unit and the radiation from the optical system incident upon the receiver unit being transmitted in collinear form, the emitting surface of the transmitter unit being situated outside of the focus of the imaging optical system.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: February 14, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Spiessberger, Frederik Ante, Mazyar Sabbar
  • Publication number: 20220376468
    Abstract: A laser emitter assembly that has a laser emitter and a support for the laser emitter. The support has a multiplicity of layers. One of the layers is a thermomechanical door that is designed to thermally regulate the laser emitter. A LiDAR system, to the power supply of which the laser emitter assembly is operatively connected, is also described.
    Type: Application
    Filed: October 23, 2020
    Publication date: November 24, 2022
    Inventors: Thomas Maurer, Frederik Ante, Markus Kienzle
  • Patent number: 11085846
    Abstract: A micromechanical sensor device is described that includes an integrated housing seal, a micromechanical sensor assembly, and a corresponding manufacturing method. The micromechanical sensor device with an integrated housing seal is equipped with a micromechanical sensor chip that includes an upper side and a lower side, a sensor area that may be brought into contact with an environmental medium being provided on or at the upper side, and is equipped with at least one circumferential trench, open toward the upper side, that is provided in the periphery of the sensor area and that is at least partly filled with a sealing medium for sealing a corresponding area of a housing to be mounted thereon.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 10, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Cristian Nagel, Frederik Ante, Sebastian Schuler-Watkins, Timo Lindemann
  • Patent number: 10775407
    Abstract: A sensor system includes a sensor device and a cover device. The sensor device includes an external surface on which at least one electrical test contact is arranged. The cover device includes at least partially an electrically insulating material and is mechanically connected to the sensor device. The cover device is configured to cover the at least one electrical test contact of the sensor device so as to prevent contact from being made to the at least one electrical test contact from outside the sensor system.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 15, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Frederik Ante
  • Publication number: 20190391029
    Abstract: A micromechanical sensor device is described that includes an integrated housing seal, a micromechanical sensor assembly, and a corresponding manufacturing method. The micromechanical sensor device with an integrated housing seal is equipped with a micromechanical sensor chip that includes an upper side and a lower side, a sensor area that may be brought into contact with an environmental medium being provided on or at the upper side, and is equipped with at least one circumferential trench, open toward the upper side, that is provided in the periphery of the sensor area and that is at least partly filled with a sealing medium for sealing a corresponding area of a housing to be mounted thereon.
    Type: Application
    Filed: January 30, 2018
    Publication date: December 26, 2019
    Inventors: Cristian Nagel, Frederik Ante, Sebastian Schuler-Watkins, Timo Lindemann
  • Publication number: 20190383908
    Abstract: A coaxial LiDAR system having a reduced adjustment complexity and reduced installation space includes a transmitter unit designed to emit LiDAR radiation, a receiver unit designed to detect incident LiDAR radiation, and an optical system for imaging LiDAR radiation, the radiation emitted by the transmitter unit and the radiation from the optical system incident upon the receiver unit being transmitted in collinear form, the emitting surface of the transmitter unit being situated outside of the focus of the imaging optical system.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 19, 2019
    Inventors: Stefan Spiessberger, Frederik Ante, Mazyar Sabbar
  • Publication number: 20180123014
    Abstract: A thermoelectric device includes a printed circuit board, a component which is arranged on the printed circuit board, a cover which covers the printed circuit board, a thermoelectric generator, and a spring unit. The thermoelectric generator is thermally connected to the printed circuit board or metal paths on the printed circuit board and to the cover in order to generate an electric supply voltage for the component from the temperature difference between the printed circuit board and the cover. The spring unit elastically holds the thermoelectric generator between the printed circuit board and the cover.
    Type: Application
    Filed: April 22, 2016
    Publication date: May 3, 2018
    Inventors: Tobias Zoller, Ricardo Ehrenpfordt, Holger Rank, Frederik Ante
  • Patent number: 9933286
    Abstract: A sensor comprises a sensor element configured to provide a sensor signal representing at least one measurand detected by the sensor element, an electrical circuit configured to process the sensor signal to form a data signal, a photovoltaic cell configured to provide electrical energy for the sensor element and the electrical circuit, and a housing, in which the sensor element, the electrical circuit and the photovoltaic cell are positioned, the housing including a recess in which the photovoltaic cell is positioned, and a rim surrounding the recess and protruding beyond the photovoltaic cell. A method is also provided.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: April 3, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Frederik Ante, Johannes Kenntner
  • Publication number: 20180090659
    Abstract: A method for producing a thermoelectric generator includes a preparation step, a connection step and an insertion step. In the preparation step, a first substrate, a thermoelectric generator material and a second substrate are prepared. In the connection step, the generator material is connected to the first substrate and the second substrate. In this way, a first side of the generator material is connected to the first substrate in a thermally and electrically conductive manner. A second side of the generator material, opposite the first side, is connected to the second substrate in a thermally and electrically conductive manner. In the insertion step, a support material is inserted between the first substrate and the second substrate, in order to support the first substrate and the second substrate against each other and/or to mechanically connect them together.
    Type: Application
    Filed: March 11, 2016
    Publication date: March 29, 2018
    Inventors: Tobias Zoller, Ricardo Ehrenpfordt, Frederik Ante, Johannes Kenntner
  • Patent number: 9919912
    Abstract: A microelectronic component arrangement includes a sensor and a carrier. The sensor has a detection surface and a region including contact elements situated at a first distance with respect to one another. The carrier includes a mounting surface, and the sensor is fixed on the carrier by the contact elements situated at a first distance with respect to one another at least regionally. The detection surface is opposite the mounting surface in a manner having a second distance with respect to the mounting surface. The contact elements are wetted by a mechanically stabilizing material, the region including the contact elements is enclosed by the mechanically stabilizing material, and the detection surface is free of the mechanically stabilizing material.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 20, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Frederik Ante, Maximilian Amberger
  • Patent number: 9917213
    Abstract: A photovoltaic module has at least one solar cell having an irradiation surface for receiving light. The photovoltaic module is configured to provide a voltage. The photovoltaic module also includes a carrier unit which is arranged laterally offset from the solar cell at least on one side. A first surface of the carrier unit is oriented flush with the irradiation surface of the solar cell within a predefined tolerance range. The photovoltaic module also includes at least one electrical conductor, which contacts a carrier contact connection on a second surface of the carrier unit opposite the first surface via a cell contact connection of an electronic component on the solar cell or the solar cell in an electrically conductive manner. The cell contact connection is arranged on a contacting side of the solar cell opposite the irradiation surface.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 13, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Frederik Ante, Johannes Kenntner
  • Patent number: 9835645
    Abstract: An acceleration sensor includes a circuit board with a recess that exposes a spring structure. The spring structure is formed from a material of the circuit board exposed by the recess and includes a vibrating element that is held in a resilient manner via at least one spring element. The sensor further includes a reference element connected rigidly to the circuit board and arranged at a distance from and opposite the vibrating element, an electrical circuit arranged on the vibrating element at a distance from the reference element, and at least one detection element. The circuit is configured to evaluate a signal that is configured to be influenced by a change in distance between the reference element and the at least one detection element in order to sense an acceleration of the acceleration sensor.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: December 5, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Remigius Has, Mirko Hattass, Frederik Ante
  • Publication number: 20170088412
    Abstract: A microelectronic component arrangement includes a sensor and a carrier. The sensor has a detection surface and a region including contact elements situated at a first distance with respect to one another. The carrier includes a mounting surface, and the sensor is fixed on the carrier by the contact elements situated at a first distance with respect to one another at least regionally. The detection surface is opposite the mounting surface in a manner having a second distance with respect to the mounting surface. The contact elements are wetted by a mechanically stabilizing material, the region including the contact elements is enclosed by the mechanically stabilizing material, and the detection surface is free of the mechanically stabilizing material.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 30, 2017
    Inventors: Frederik Ante, Maximilian Amberger
  • Publication number: 20170082466
    Abstract: An electronic module includes at least one support plate and at least one electronic component. The at least one support plate defines at least one through opening and has a contact side that includes at least one contact element. The at least one electronic module includes at least one electronic component positioned on the contact side of the support plate opposite the through opening. The at least one contact element projects beyond the at least one electronic component.
    Type: Application
    Filed: February 19, 2015
    Publication date: March 23, 2017
    Inventors: Dominik Geisler, Ricardo Ehrenpfordt, Viktor Morosow, Frederik Ante
  • Patent number: 9588005
    Abstract: Measures are described which simplify the functional testing of a component having an MEMS element provided with a pressure-sensitive sensor diaphragm, and which allow a self-calibration of the component even after it is already in place, i.e., following the end of the production process. The component has a housing, in which are situated at least one MEMS element having a pressure-sensitive sensor diaphragm and a switching arrangement for detecting the diaphragm deflections as measuring signals; an arrangement for analyzing the measuring signals; and an arrangement for the defined excitation of the sensor diaphragm. The housing has at least one pressure connection port. The arrangement for exciting the sensor diaphragm includes at least one selectively actuable actuator component for generating defined pressure pulses that act on the sensor diaphragm.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 7, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Juergen Graf, Christoph Schelling, Frederik Ante, Michael Curcic
  • Publication number: 20160291050
    Abstract: An inertial sensor includes a first sensor element, which is damped against vibrations from an interface of the inertial sensor by a damping element. The first sensor element is configured to detect a first measured variable in a first frequency band, and the damping element is configured to dampen vibrations at least in the first frequency band. The inertial sensor further includes a second sensor element, which is mechanically coupled to the interface. The second sensor element is configured to detect a second measured variable in a second frequency band.
    Type: Application
    Filed: October 28, 2014
    Publication date: October 6, 2016
    Applicant: ROBERT BOSCH GMBH
    Inventors: Ricardo Ehrenpfordt, Daniel Pantel, Frederik Ante
  • Publication number: 20160276566
    Abstract: An electrical circuit includes a component, a thermoelectric generator, and a housing. The component is a sensor element configured to sense a quantity to be measured. The component is mechanically connected to an element side of a carrier element of the circuit. The thermoelectric generator is electrically connected to the component and mechanically connected to the carrier element. The thermoelectric generator is configured to supply the component with electrical energy by using a heat flow flowing through the thermoelectric generator. The housing is arranged on the element side of the carrier element and at least partially covers the component and the thermoelectric generator. The housing is configured to conduct the heat flow to the thermoelectric generator.
    Type: Application
    Filed: October 6, 2014
    Publication date: September 22, 2016
    Inventors: Tjalf Pirk, Ricardo Ehrenpfordt, Frederik Ante, Johannes Kenntner
  • Patent number: 9335203
    Abstract: A new signal acquisition concept is provided for MEMS components having a pressure-sensitive diaphragm element, which at least partially spans a pressure connection opening. This signal acquisition concept is distinguished by an especially high sensitivity. For this purpose, the MEMS component includes a resonant vibrator device having a vibrating element, which is suspended, capable of vibrating, within a closed cavity and is equipped with at least one drive electrode and at least one sensing electrode. The vibrating element of the resonant vibrator device is coupled mechanically to the diaphragm element, so that the vibrating element is deformed in the case of a diaphragm deflection.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: May 10, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Juergen Graf, Christoph Schelling, Frederik Ante, Michael Curcic