Patents by Inventor Frederik Pasch

Frederik Pasch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210407687
    Abstract: A monitoring system may include a memory having computer-readable instructions stored thereon and a processor operatively coupled to the memory. The processor may read and execute the computer-readable instructions to perform or control performance of operations. The operations may include receive, prior to a collision involving a vehicle, sensor data representative of a feature of an internal environment and determine the collision has occurred. The operations may include automatically instruct, based on the collision, a sensor to generate another sensor data representative of another feature of the internal environment. The operations may include receive the another sensor data from the sensor and compare the sensor data and the another sensor data to accident data corresponding to previous accidents. The accident data may include a diagnosed injury and an accident severity of each of the previous accidents. The operations may include determine a severity of the collision based on the comparison.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventors: Frederik PASCH, Bernd GASSMANN, Kay-Ulrich SCHOLL, Cornelius BUERKLE, Fabian OBORIL
  • Publication number: 20210397858
    Abstract: Disclosed herein are systems and methods for detecting and mitigating inappropriate behavior. The systems and methods may include receiving data. Using the data a harassment score and/or classification for a behavior may be determined. Using the harassment score and/or classification, a determination may be made as to when the harassment score and/or classification for the behavior exceeds a threshold. When the threshold is exceeded, a protection system and/or action engine may be activated to mitigate the inappropriate behavior.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 23, 2021
    Inventors: Cornelius Buerkle, Fabian Oboril, Frederik Pasch, Yin Wei Liew, Say Chuan Tan, Chien Chern Yew, Ralf Graefe, Florian Geissler, Ignacio J. Alvarez
  • Publication number: 20210380143
    Abstract: Disclosed herein is a vehicle handover system that monitors an environment of a vehicle. The vehicle handover system receives a transition request to change control of the vehicle from an automated driving mode to a passenger of the vehicle. The vehicle handover system detects a key event that may be relevant to the transition request and the detection of the key event is based on the monitored environment. The vehicle handover system may generate a handover scene that includes images associated with the key event, and the images include an image sequence over a time-period of the key event. Before the vehicle handover system changes control of the vehicle from the automated driving mode to the passenger, the handover scene is displayed to the passenger.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Ignacio J. ALVAREZ, Michael PAULITSCH, Rafael ROSALES, Cornelius BUERKLE, Florian GEISSLER, Fabian OBORIL, Frederik PASCH, Yang PENG
  • Publication number: 20210370954
    Abstract: Disclosed herein is a passenger monitoring system for monitoring an observed attribute of a passenger in a vehicle. The observed attribute may include a gaze of the passenger, a head track of the passenger, and other observations about the passenger in the vehicle. Based on the observed attribute(s), a field of view of the passenger may be determined. Based on the field of view, a focus point of the passenger may be determined, where the focus point is estimated to be within the field of view. If a sign (e.g., a road sign, a billboard, etc.) is within the field of view of the passenger, record an attention score for the sign based on a duration of time during which the sign is within the field of view and estimated to be the focus point of the passenger.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 2, 2021
    Inventors: Ignacio J. ALVAREZ, Cornelius BUERKLE, Florian GEISSLER, Marcio JULIATO, Fabian OBORIL, Frederik PASCH, Ivan SIMOES GASPAR
  • Publication number: 20210114615
    Abstract: Disclosed are embodiments for coupling an autonomous vehicle with service equipment. The service equipment is configured to perform one or more services when coupled with the autonomous vehicle. In some embodiments, an environmental model generated by the autonomous vehicle is shared with a controller of the service equipment, which fuses sensor data collected from an on-board sensor and the environmental model from the autonomous vehicle to generate an integrated environmental model. The controller of the service equipment then performs the service based on the integrated environmental model.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 22, 2021
    Inventors: Cornelius Buerkle, Kay-Ulrich Scholl, Fabian Oboril, Frederik Pasch
  • Publication number: 20210108929
    Abstract: Disclosed are embodiments for adjusting a vehicle stopping point. The vehicle stopping point is a point between a route of the vehicle and a second route. in some embodiments, an adjustment to the stopping point is determined based on ranking secondary routes that are adjusted based on the adjusted vehicle stopping point. Tanking of the secondary routes is based, in sonic embodiments, on a score of segment(s) included in the secondary routes. In some cases, the ranking of the segments considers safety information associated with each of the segments.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Yi Zhang, Frederik Pasch, Hao Feng, Cornelius Buerkle, Maruti Gupta Hyde, Fabian Oboril, Ravikumar Balakrishnan, Kay-Ulrich Scholl
  • Publication number: 20210112393
    Abstract: Mobility-as-a-Service (MaaS) provides technical solutions for technical problems facing this shift toward public and private vehicles for hire, including providing a platform for users to identify and select public transportation and private vehicles for hire. Users may plan and book transportation services through a MaaS platform, such as a smartphone application. Technical solutions described herein include improved identification and selection of a vehicle based on wireless communication, such as using Near-Field Communication (NFC), Bluetooth, Wi-Fi, and other wireless communication.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Fabian Oboril, Frederik Pasch, Cornelius Buerkle, Bernd Gassmann, Kay-Ulrich Scholl
  • Publication number: 20210107530
    Abstract: Systems and techniques for a distributed in-vehicle realtime sensor data processing as a service are described herein. In an example, a system is adapted to receive a request for sensor data from vehicles. The system may be further adapted to generate an application for collection of the sensor data. The application may have sensor requirements for performing the collection of sensor data. The system may be further adapted to identify a set of vehicles for distribution of the application based on available sensors in each vehicle corresponding to the sensor requirements. The system may be further adapted to transmit the application to the set of vehicles and receive sensor data results from respective instances of the application executing on the set of vehicles. The system may be further adapted to transmit a command to remove the respective instances of the application from the set of vehicles.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Cornelius Buerkle, Kay-Ulrich Scholl, Fabian Oboril, Frederik Pasch
  • Publication number: 20210107470
    Abstract: A safety system for a vehicle may include a processor configured to determine whether a further vehicle is approaching the vehicle from a backside or a lateral side; determine that a collision of the further vehicle with the vehicle is likely; determine an evasive maneuver of the vehicle such that the evasive maneuver reduces the collision likelihood or impact between the vehicle and the further vehicle; and provide control instructions to control the vehicle to perform the evasive maneuver.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Fabian OBORIL, Frederik PASCH, Cornelius Israel BUERKLE, Kay-Ulrich Charles SCHOLL
  • Publication number: 20210103738
    Abstract: Various systems and methods for providing assistance at the end of an autonomous system journey are provided. A system can include an autonomous system configured to transport the user, a first sensor coupled to the autonomous system and configured to provide a sensor stream of an environment between the autonomous system and a terminus, and a terminus assistance processor mechanically coupled to the autonomous system. In an example, the terminus assistance processor can receive and process the sensor stream, detect and can track the user in the environment in response to the sensor stream, and can provide status information to a first mobile device based on the sensor stream.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Inventors: Cornelius Buerkle, Kay-Ulrich Scholl, Fabian Oboril, Frederik Pasch