Patents by Inventor Fredrick Jenne
Fredrick Jenne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240234550Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: ApplicationFiled: October 9, 2023Publication date: July 11, 2024Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G. Geha
-
Patent number: 11784243Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: GrantFiled: December 2, 2021Date of Patent: October 10, 2023Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTDInventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G Geha
-
Publication number: 20230017648Abstract: A semiconductor device including an oxide-nitride-oxide (ONO) structure having a multi-layer charge storing layer and methods of forming the same are provided. Generally, the method involves: (i) forming a first oxide layer of the ONO structure; (ii) forming a multi-layer charge storing layer comprising nitride on a surface of the first oxide layer; and (iii) forming a second oxide layer of the ONO structure on a surface of the multi-layer charge storing layer. Preferably, the charge storing layer comprises at least two silicon oxynitride layers having differing stoichiometric compositions of Oxygen, Nitrogen and/or Silicon. More preferably, the ONO structure is part of a silicon-oxide-nitride-oxide-silicon (SONOS) structure and the semiconductor device is a SONOS memory transistor. Other embodiments are also disclosed.Type: ApplicationFiled: September 15, 2022Publication date: January 19, 2023Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G. Geha
-
Publication number: 20220093773Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: ApplicationFiled: December 2, 2021Publication date: March 24, 2022Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G Geha
-
Patent number: 11222965Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: GrantFiled: December 24, 2019Date of Patent: January 11, 2022Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTDInventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G Geha
-
Publication number: 20210249254Abstract: A semiconductor device including an oxide-nitride-oxide (ONO) structure having a multi-layer charge storing layer and methods of forming the same are provided. Generally, the method involves: (i) forming a first oxide layer of the ONO structure; (ii) forming a multi-layer charge storing layer comprising nitride on a surface of the first oxide layer; and (iii) forming a second oxide layer of the ONO structure on a surface of the multi-layer charge storing layer. Preferably, the charge storing layer comprises at least two silicon oxynitride layers having differing stochiometric compositions of Oxygen, Nitrogen and/or Silicon. More preferably, the ONO structure is part of a silicon-oxide-nitride-oxide-silicon (SONOS) structure and the semiconductor device is a SONOS memory transistor. Other embodiments are also disclosed.Type: ApplicationFiled: January 25, 2021Publication date: August 12, 2021Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G. Geha
-
Patent number: 10903068Abstract: A semiconductor device including an oxide-nitride-oxide (ONO) structure having a multi-layer charge storing layer and methods of forming the same are provided. Generally, the method involves: (i) forming a first oxide layer of the ONO structure; (ii) forming a multi-layer charge storing layer comprising nitride on a surface of the first oxide layer; and (iii) forming a second oxide layer of the ONO structure on a surface of the multi-layer charge storing layer. Preferably, the charge storing layer comprises at least two silicon oxynitride layers having differing stochiometric compositions of Oxygen, Nitrogen and/or Silicon. More preferably, the ONO structure is part of a silicon-oxide-nitride-oxide-silicon (SONOS) structure and the semiconductor device is a SONOS memory transistor. Other embodiments are also disclosed.Type: GrantFiled: April 14, 2016Date of Patent: January 26, 2021Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G. Geha
-
Patent number: 10903342Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: GrantFiled: May 30, 2018Date of Patent: January 26, 2021Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
-
Patent number: 10896973Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: GrantFiled: May 30, 2018Date of Patent: January 19, 2021Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
-
Publication number: 20200144399Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: ApplicationFiled: December 24, 2019Publication date: May 7, 2020Inventors: Sagy Charel Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam G. Geha
-
Publication number: 20190319104Abstract: Scaling a charge trap memory device and the article made thereby. In one embodiment, the charge trap memory device includes a substrate having a source region, a drain region, and a channel region electrically connecting the source and drain. A tunnel dielectric layer is disposed above the substrate over the channel region, and a multi-layer charge-trapping region disposed on the tunnel dielectric layer.Type: ApplicationFiled: March 12, 2019Publication date: October 17, 2019Inventors: Sagy Levy, Fredrick Jenne, Krishnaswamy Ramkumar
-
Patent number: 10374067Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: GrantFiled: June 22, 2016Date of Patent: August 6, 2019Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
-
Patent number: 10263087Abstract: A memory is described. Generally, the memory includes a number of non-planar multigate transistors, each including a channel of semiconducting material overlying a surface of a substrate and electrically connecting a source and a drain, a tunnel dielectric layer overlying the channel on at least three sides thereof, and a multi-layer charge-trapping region overlying the tunnel dielectric layer. In one embodiment, the multi-layer charge-trapping region includes a first deuterated layer overlying the tunnel dielectric layer and a first nitride-containing layer overlying the first deuterated layer. Other embodiments are also described.Type: GrantFiled: July 18, 2017Date of Patent: April 16, 2019Assignee: Cypress Semiconductor CorporationInventors: Sagy Levy, Fredrick Jenne, Krishnaswamy Ramkumar
-
Publication number: 20180366563Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: ApplicationFiled: May 30, 2018Publication date: December 20, 2018Applicant: Cypress Semiconductor CorporationInventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
-
Publication number: 20180366564Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: ApplicationFiled: May 30, 2018Publication date: December 20, 2018Applicant: Cypress Semiconductor CorporationInventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
-
Publication number: 20170352732Abstract: A memory is described. Generally, the memory includes a number of non-planar multigate transistors, each including a channel of semiconducting material overlying a surface of a substrate and electrically connecting a source and a drain, a tunnel dielectric layer overlying the channel on at least three sides thereof, and a multi-layer charge-trapping region overlying the tunnel dielectric layer. In one embodiment, the multi-layer charge-trapping region includes a first deuterated layer overlying the tunnel dielectric layer and a first nitride-containing layer overlying the first deuterated layer. Other embodiments are also described.Type: ApplicationFiled: July 18, 2017Publication date: December 7, 2017Applicant: Cypress Semiconductor CorporationInventors: Sagy Levy, Fredrick Jenne, Krishnaswamy Ramkumar
-
Patent number: 9741803Abstract: A charge trap memory device is provided. In one embodiment, the charge trap memory device includes a semiconductor material structure having a vertical channel extending from a first diffusion region formed in a semiconducting material to a second diffusion region formed over the first diffusion region, the vertical channel electrically connecting the first diffusion region to the second diffusion region. A tunnel dielectric layer is disposed on the vertical channel, a multi-layer charge-trapping region including a first deuterated layer disposed on the tunnel dielectric layer, a first nitride layer disposed on the first deuterated layer, and a second nitride layer comprising a deuterium-free trap-dense, oxygen-lean nitride disposed on the first nitride layer. The second nitride layer includes a majority of charge traps distributed in the multi-layer charge-trapping region.Type: GrantFiled: June 22, 2016Date of Patent: August 22, 2017Assignee: Cypress Semiconductor CorporationInventors: Sagy Levy, Fredrick Jenne, Krishnaswamy Ramkumar
-
Patent number: 9716153Abstract: Scaling a charge trap memory device and the article made thereby. In one embodiment, the charge trap memory device includes a substrate having a source region, a drain region, and a channel region electrically connecting the source and drain. A tunnel dielectric layer is disposed above the substrate over the channel region, and a multi-layer charge-trapping region disposed on the tunnel dielectric layer. The multi-layer charge-trapping region includes a first deuterated layer disposed on the tunnel dielectric layer, a first nitride layer disposed on the first deuterated layer and a second nitride layer.Type: GrantFiled: July 1, 2012Date of Patent: July 25, 2017Assignee: Cypress Semiconductor CorporationInventors: Sagy Levy, Fredrick Jenne, Krishnaswamy Ramkumar
-
Publication number: 20160308009Abstract: A charge trap memory device is provided. In one embodiment, the charge trap memory device includes a semiconductor material structure having a vertical channel extending from a first diffusion region formed in a semiconducting material to a second diffusion region formed over the first diffusion region, the vertical channel electrically connecting the first diffusion region to the second diffusion region. A tunnel dielectric layer is disposed on the vertical channel, a multi-layer charge-trapping region including a first deuterated layer disposed on the tunnel dielectric layer, a first nitride layer disposed on the first deuterated layer, and a second nitride layer comprising a deuterium-free trap-dense, oxygen-lean nitride disposed on the first nitride layer. The second nitride layer includes a majority of charge traps distributed in the multi-layer charge-trapping region.Type: ApplicationFiled: June 22, 2016Publication date: October 20, 2016Inventors: Sagy LEVY, Fredrick JENNE, Krishnaswamy RAMKUMAR
-
Publication number: 20160308033Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.Type: ApplicationFiled: June 22, 2016Publication date: October 20, 2016Inventors: Sagy LEVY, Krishnaswamy RAMKUMAR, Fredrick JENNE, Sam GEHA