Patents by Inventor Freeman Lan

Freeman Lan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150811
    Abstract: Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.
    Type: Application
    Filed: June 22, 2023
    Publication date: May 9, 2024
    Inventors: Adam R. Abate, John R. Haliburton, Freeman Lan, Adam R. Sciambi
  • Patent number: 11732287
    Abstract: Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 22, 2023
    Assignee: The Regents of the University of California
    Inventors: Adam R. Abate, John R. Haliburton, Freeman Lan, Adam R. Sciambi
  • Publication number: 20220033893
    Abstract: The present disclosure provides ultrahigh-throughput single cell genomic sequencing methods, referred to herein as “SiC-seq”, which methods include encapsulating single cells in molten gel droplets to facilitate bulk cell lysis and purification of genomic DNA in microgels. Systems and devices for practicing the subject methods are also provided.
    Type: Application
    Filed: December 21, 2017
    Publication date: February 3, 2022
    Inventors: Freeman Lan, Benjamin Demaree, Iain Clark, Adam R. Abate
  • Patent number: 11124830
    Abstract: The present disclosure provides ultrahigh-throughput single cell genomic sequencing methods, referred to herein as “SiC-seq”, which methods include encapsulating single cells in molten gel droplets to facilitate bulk cell lysis and purification of genomic DNA in microgels. Systems and devices for practicing the subject methods are also provided.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: September 21, 2021
    Assignee: The Regents of the University of California
    Inventors: Freeman Lan, Benjamin Demaree, Iain Clark, Adam R. Abate
  • Patent number: 11111519
    Abstract: Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: September 7, 2021
    Assignee: The Regents of the University of California
    Inventors: Adam R. Abate, John R. Haliburton, Freeman Lan, Adam R. Sciambi
  • Publication number: 20200277672
    Abstract: The present disclosure provides ultrahigh-throughput single cell genomic sequencing methods, referred to herein as “SiC-seq”, which methods include encapsulating single cells in molten gel droplets to facilitate bulk cell lysis and purification of genomic DNA in microgels. Systems and devices for practicing the subject methods are also provided.
    Type: Application
    Filed: April 15, 2020
    Publication date: September 3, 2020
    Inventors: Freeman Lan, Benjamin Demaree, Iain Clark, Adam R. Abate
  • Publication number: 20180237836
    Abstract: Methods for non-specifically amplifying a nucleic acid template molecule are provided. The methods may be used to amplify nucleic acid template molecule(s) for sequencing, e.g., for sequencing the genomes of uncultivable microbes or sequencing to identify copy number variation in cancer cells. Aspects of the disclosed methods may include non-specifically amplifying a nucleic acid template molecule, including encapsulating in a microdroplet a nucleic acid template molecule obtained from a biological sample, introducing multiple displacement amplification (MDA) reagents and a plurality of MDA primers into the microdroplet, and incubating the microdroplet under conditions effective for the production of MDA amplification products, wherein the incubating is effective to produce MDA amplification products from the nucleic acid template molecule.
    Type: Application
    Filed: August 16, 2016
    Publication date: August 23, 2018
    Inventors: Adam R. Abate, Freeman Lan, Shaun Lim, Angus Sidore
  • Publication number: 20180216160
    Abstract: Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Adam R. Abate, John R. Haliburton, Freeman Lan, Adam R. Sciambi
  • Publication number: 20170009274
    Abstract: Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.
    Type: Application
    Filed: February 3, 2016
    Publication date: January 12, 2017
    Inventors: Adam R. Abate, John Halliburton, Freeman Lan, Adam R. Sciambi