Patents by Inventor Freerk Van Rijs

Freerk Van Rijs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240106396
    Abstract: The present invention relates to a push-pull amplifying unit and a Doherty amplifier. The push-pull amplifying unit comprises a first amplifier, a second amplifier, a first shunt inductor, and a second shunt inductor. The first and second shunt inductors have mutually connected second terminals and are inductively coupled to increase the impedance between the first output and the virtual ground and the impedance between the second output and the virtual ground at a fundamental frequency of a signal to be amplified by the push-pull amplifying unit relative to those impedances in the absence of said inductive coupling, and to decrease the impedance between the first output and the virtual ground and the impedance between the second output and the virtual ground at a second harmonic frequency of the signal to be amplified relative to those impedances in the absence of said inductive coupling.
    Type: Application
    Filed: February 4, 2022
    Publication date: March 28, 2024
    Inventors: Mohammad Reza BEIKMIRZA, Seyed Morteza ALAVI, Leonardus Cornelis Nicolaas DE VREEDE, Freerk VAN RIJS, Radjindrepersad GAJADHARSING
  • Publication number: 20230139209
    Abstract: An RF transmitter (1) having a gate-segmented power output stage (2) and a digital driver (5). The gate-segmented power output stage (2) includes a field-effect transistor with a plurality of gate fingers (32) and drain fingers (31) that define a gate periphery. The field-effect transistor comprises a plurality of power output stage segments (3) that each correspond to a respective part of the gate periphery, and that each have a respective power output stage segment input (4). The digital driver (5) has control outputs (6) which are connected to corresponding ones of the respective power output stage segment inputs (4), and is configured for individually switching each of the power output stage segments (3) between an on mode and a cut-off mode in dependence of one or more input signals to obtain a modulated RF carrier signal at an output (7) of the gate-segmented power output stage (2).
    Type: Application
    Filed: February 5, 2021
    Publication date: May 4, 2023
    Applicant: Technische Universiteit Delft
    Inventors: Leonardus Cornelis Nicolaas de Vreede, Seyed Morteza Alavi, Robert Jan Bootsman, Mohammad Reza Beikmirza, Dieuwert Peter Nicolaas Mul, Rob Heeres, Freerk van Rijs
  • Patent number: 10763227
    Abstract: The present disclosure relates to a packaged radiofrequency (RF) power amplifier. The present disclosure further relates to a semiconductor die that is used in such a power amplifier and to an electronic device or system that comprises the semiconductor die and/or power amplifier. According to the disclosure, the semiconductor die comprises a second drain bond assembly arranged spaced apart from the first drain bond assembly and electrically connected thereto, wherein the second drain bond assembly is arranged closer to the input side of the semiconductor die than the first drain bond assembly. The RF power amplifier comprises a first plurality of bondwires which extend between the first drain bond assembly and the output lead, and a second plurality of bondwires which extend from the second drain bond assembly to a first terminal of a grounded capacitor.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 1, 2020
    Assignee: Ampleon Netherlands B.V.
    Inventors: Rob Mathijs Heeres, Freerk van Rijs
  • Patent number: 10453810
    Abstract: The present disclosure relates to a radio frequency (RF) power transistor package. It further relates to a mobile telecommunications base station comprising such an RF power transistor package, and to an integrated passive die suitable for use in an RF power amplifier package. In example embodiments, an in-package impedance network is used that is connected to an output of the RF power transistor arranged inside the package. This network comprises a first inductive element having a first and second terminal, the first terminal being electrically connected to the output of the RF transistor, a resonance unit electrically connected to the second terminal of the first inductive element, and a second capacitive element electrically connected in between the resonance unit and ground, where the first capacitive element is arranged in series with the second capacitive element.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: October 22, 2019
    Assignee: Ampleon Netherlands B.V.
    Inventors: Johannes Adrianus Maria De Boet, Freerk Van Rijs, Iordan Konstantinov Sveshtarov
  • Publication number: 20190181106
    Abstract: The present disclosure relates to a packaged radiofrequency (RF) power amplifier. The present disclosure further relates to a semiconductor die that is used in such a power amplifier and to an electronic device or system that comprises the semiconductor die and/or power amplifier. According to the disclosure, the semiconductor die comprises a second drain bond assembly arranged spaced apart from the first drain bond assembly and electrically connected thereto, wherein the second drain bond assembly is arranged closer to the input side of the semiconductor die than the first drain bond assembly. The RF power amplifier comprises a first plurality of bondwires which extend between the first drain bond assembly and the output lead, and a second plurality of bondwires which extend from the second drain bond assembly to a first terminal of a grounded capacitor.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 13, 2019
    Inventors: Rob Mathijs Heeres, Freerk van Rijs
  • Publication number: 20190172804
    Abstract: The present disclosure relates to a radio frequency (RF) power transistor package. It further relates to a mobile telecommunications base station comprising such an RF power transistor package, and to an integrated passive die suitable for use in an RF power amplifier package. In example embodiments, an in-package impedance network is used that is connected to an output of the RF power transistor arranged inside the package. This network comprises a first inductive element having a first and second terminal, the first terminal being electrically connected to the output of the RF transistor, a resonance unit electrically connected to the second terminal of the first inductive element, and a second capacitive element electrically connected in between the resonance unit and ground, where the first capacitive element is arranged in series with the second capacitive element.
    Type: Application
    Filed: January 29, 2019
    Publication date: June 6, 2019
    Applicant: Ampleon Netherlands B.V.
    Inventors: Johannes Adrianus Maria De Boet, Freerk Van Rijs, Iordan Konstantinov Sveshtarov
  • Patent number: 10242960
    Abstract: The present disclosure relates to a radio frequency (RF) power transistor package. It further relates to a mobile telecommunications base station comprising such an RF power transistor package, and to an integrated passive die suitable for use in an RF power amplifier package. In example embodiments, an in-package impedance network is used that is connected to an output of the RF power transistor arranged inside the package. This network comprises a first inductive element having a first and second terminal, the first terminal being electrically connected to the output of the RF transistor, a resonance unit electrically connected to the second terminal of the first inductive element, and a second capacitive element electrically connected in between the resonance unit and ground, where the first capacitive element is arranged in series with the second capacitive element.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: March 26, 2019
    Assignee: Ampleon Netherlands B.V.
    Inventors: Johannes Adrianus Maria De Boet, Freerk Van Rijs, Iordan Konstantinov Sveshtarov
  • Publication number: 20180026000
    Abstract: The present disclosure relates to a radio frequency (RF) power transistor package. It further relates to a mobile telecommunications base station comprising such an RF power transistor package, and to an integrated passive die suitable for use in an RF power amplifier package. In example embodiments, an in-package impedance network is used that is connected to an output of the RF power transistor arranged inside the package. This network comprises a first inductive element having a first and second terminal, the first terminal being electrically connected to the output of the RF transistor, a resonance unit electrically connected to the second terminal of the first inductive element, and a second capacitive element electrically connected in between the resonance unit and ground, where the first capacitive element is arranged in series with the second capacitive element.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 25, 2018
    Applicant: Ampleon Netherlands B.V.
    Inventors: Johannes Adrianus Maria De Boet, Freerk Van Rijs, Iordan Konstantinov Sveshtarov
  • Patent number: 8416023
    Abstract: System and method for compensating for changes in an output impedance of a power amplifier uses an impedance compensating circuit with an impedance inverter coupled to the power amplifier. The impedance inverter of the impedance compensating circuit is configured such that an output impedance of the impedance inverter is proportional to the inverse of the output impedance of the power amplifier to compensate for changes in the output impedance of the power amplifier.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 9, 2013
    Assignee: NXP B.V.
    Inventors: Freerk van Rijs, Alexander Otto Harm
  • Publication number: 20110298535
    Abstract: System and method for compensating for changes in an output impedance of a power amplifier uses an impedance compensating circuit with an impedance inverter coupled to the power amplifier. The impedance inverter of the impedance compensating circuit is configured such that an output impedance of the impedance inverter is proportional to the inverse of the output impedance of the power amplifier to compensate for changes in the output impedance of the power amplifier.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 8, 2011
    Applicant: NXP B.V.
    Inventors: Freerk Van Rijs, Alexander Otto Harm
  • Patent number: 7989879
    Abstract: The LDMOS transistor (1) of the invention comprises a source region (3), a channel region (4), a drain extension region (7) and a gate electrode (10). The LDMOS transistor (1) further comprises a first gate oxide layer (8) and a second gate oxide layer (9), which is thicker than the first gate oxide layer (8). The first gate oxide layer (8) at least extends over a first portion of the channel region (4), which is adjacent to the source region (3). The second gate oxide layer (9) extends over a region where a local maximum (A, B) of the electric field (E) generates hot carriers thereby reducing the impact of the hot carriers and reducing the Idq-degradation. In another embodiment the second gate oxide layer (9) extends over a second portion of the channel region (4), which mutually connects the drain extension region (7) and the first portion of the channel region (4), thereby improving the linear efficiency of the LDMOS transistor (1).
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: August 2, 2011
    Assignee: NXP B.V.
    Inventors: Freerk Van Rijs, Stephan J. C. H. Theeuwen, Petra C. A. Hammes
  • Publication number: 20090218622
    Abstract: The LDMOS transistor (1) of the invention comprises a source region (3), a channel region (4), a drain extension region (7) and a gate electrode (10). The LDMOS transistor (1) further comprises a first gate oxide layer (8) and a second gate oxide layer (9), which is thicker than the first gate oxide layer (8). The first gate oxide layer (8) at least extends over a first portion of the channel region (4), which is adjacent to the source region (3). The second gate oxide layer (9) extends over a region where a local maximum (A, B) of the electric field (E) generates hot carriers thereby reducing the impact of the hot carriers and reducing the Idq-degradation. In another embodiment the second gate oxide layer (9) extends over a second portion of the channel region (4), which mutually connects the drain extension region (7) and the first portion of the channel region (4), thereby improving the linear efficiency of the LDMOS transistor (1).
    Type: Application
    Filed: July 10, 2006
    Publication date: September 3, 2009
    Applicant: NXP B.V.
    Inventors: Freerk Van Rijs, Stephan J., C., H. Theeuwen, Petra C., A. Hammes
  • Patent number: 7521768
    Abstract: The LDMOS transistor (99) of the invention is provided with a stepped shield structure (50) and/or with a first (25) and a second (26) drain extension region having a higher dopant concentration than the second drain extension region, and being covered by the shield.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: April 21, 2009
    Assignee: NXP B.V.
    Inventors: Stephan Jo Cecile Henri Theeuwen, Freerk Van Rijs, Petra Christina Anna Hammes, Ivo Bernhard Pouwel, Hendrikus Ferdinand Franciscus Jos
  • Publication number: 20080237705
    Abstract: The LDMOS transistor (1) of the invention comprises a substrate (2), a gate electrode (10), a substrate contact region (11), a source region (3), a channel region (4) and a drain region (5), which drain region (5) comprises a drain contact region (6) and drain extension region (7). The drain contact region (6) is electrically connected to a top metal layer (23), which extends over the drain extension region (7), with a distance (723) between the top metal layer (23) and the drain extension region (7) that is larger than 2?m. This way the area of the drain contact region (6) may be reduced and the RF power output efficiency of the LDMOS transistor (1) increased. In another embodiment the source region (3) is electrically connected to the substrate contact region (11) via a suicide layer (32) instead of a first metal layer (21), thereby reducing the capacitive coupling between the source region (3) and the drain region (5) and hence increasing the RF power output efficiency of the LDMOS transistor (1) further.
    Type: Application
    Filed: August 2, 2006
    Publication date: October 2, 2008
    Applicant: NXP B.V.
    Inventors: Stephan Jo Cecile Henri Theeuwen, Freerk Van Rijs, Petra C.A. Hammes
  • Publication number: 20070007591
    Abstract: The LDMOS transistor (99) of the invention is provided with a stepped shield structure (50) and/or with a first (25) and a second (26) drain extension region having a higher dopant concentration than the second drain extension region, and being covered by the shield.
    Type: Application
    Filed: August 24, 2004
    Publication date: January 11, 2007
    Inventors: Stephan jo Cecile Theeuwen, Freerk Van Rijs, Petra Christina Hammes, Ivo Pouwel, Henrikus Ferdinand Jos
  • Patent number: 6917077
    Abstract: A semiconductor arrangement including: a substrate having a substrate layer (13) with an upper and lower surface, the substrate layer (13) being of a first conductivity type; a first buried layer (12) in the substrate, extending along said lower surface below a first portion of said upper surface of said substrate layer (13), and a second buried layer (12) in the substrate, extending along said lower surface below a second portion of said upper surface of said substrate layer (13); a first diffusion (26) in said first portion of said substrate layer (13), being of a second conductivity type opposite to said first conductivity type and having a first distance to said first buried layer (12) for defining a first breakdown voltage between said first diffusion (26) and said first buried layer (12); a second diffusion (45) in said second portion of said substrate layer (13), being of said second conductivity type and having a second distance to said second buried layer (12) for defining a second breakdown volta
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: July 12, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Petrus Hubertus Cornelis Magnee, Freerk Van Rijs, Hendrik Gezienus Albert Huizing
  • Patent number: 6593628
    Abstract: The invention relates to an essentially discrete semiconductor device comprising a semiconductor body (10) having a first, preferably bipolar, transistor (T1) with a first region (1) forming a collector (1) of T1, and a second, preferably also bipolar, transistor (T2) with a second region (2) forming a collector (2) of T2, which transistors (T1, T2) are in a cascode configuration wherein the collector (1) of T1is connected to the emitter (4) of T2. Such a device cannot suitably be used in a base station for mobile communication. According to the invention, the first region (1) and the second region (2) are positioned next to each other within a semiconductor region (5), a part of which situated below the first region (1) is provided with a higher doping concentration at the location of T1. In this way, T1 has a low collector-emitter breakdown voltage and a high cutoff frequency, whereas for T2 said voltage and frequency are, respectively, high(er) and low(er).
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: July 15, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ronald Dekker, Henricus Godefridus Rafael Maas, Jan Willem Slotboom, Freerk Van Rijs
  • Publication number: 20030030127
    Abstract: The bipolar transistor comprises a collector region (1) of a semiconductor material with a first doping type, an emitter region (2) with a first doping type, and a base region (3) of a semiconductor material with a second doping type, opposite to the first doping type, which base region is arranged between the emitter region (2) and the collector region (1), and a semiconductor area (4) extending between the collector region (1) and the base region (3).
    Type: Application
    Filed: August 2, 2002
    Publication date: February 13, 2003
    Inventors: Hendrik Gezienus Albert Huizing, Jan Willem Slotboom, Igor Lyuboshenko, Johan Hendrik Klootwijk, Freerk Van Rijs, Joost Melai
  • Patent number: 6437420
    Abstract: The invention relates to a semiconductor device (100) with a semiconductor body (10) comprising at least one semiconductor element (H) with an active area (A) and a coil (20) coupled to said element (H). The coil (20) and a further coil (21) jointly form a transformer (F). The semiconductor body (10) is secured to a carrier plate (30) which comprises an electrically insulating material and is covered with a conductor track (21). According to the invention, the further coil (21) is positioned on the carrier plate (30) and is formed by the conductor track (21) and electrically separated from the coil (20). In this way, a-device (100) is obtained which is easier to manufacture than the known device. Moreover, the communication between the element (H) and the outside world does not involve an electrical coupling and hence, for example, bonding wires, are not necessary. The invention is particularly advantageous for a (discrete) bipolar transistor, which can suitably be used for surface mounting.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: August 20, 2002
    Assignee: Koninklijke Philips Electronics N. V.
    Inventors: Freerk Van Rijs, Ronald Dekker
  • Publication number: 20020096713
    Abstract: The present invention relates to semi-conductor device comprising:
    Type: Application
    Filed: January 22, 2002
    Publication date: July 25, 2002
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Petrus Hubertus Cornelis Magnee, Hendrik Gezienus Albert Huizing, Freerk Van Rijs