Patents by Inventor Fridolin J. Schlaepfer
Fridolin J. Schlaepfer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240032970Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: October 10, 2023Publication date: February 1, 2024Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 11812998Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: August 26, 2021Date of Patent: November 14, 2023Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20210378715Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: August 26, 2021Publication date: December 9, 2021Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 11134992Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: June 7, 2019Date of Patent: October 5, 2021Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20190282278Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: June 7, 2019Publication date: September 19, 2019Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 10357287Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: December 8, 2017Date of Patent: July 23, 2019Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20180098796Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: December 8, 2017Publication date: April 12, 2018Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 9872710Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: February 18, 2016Date of Patent: January 23, 2018Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20160157894Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor, a body with a rod-receiving channel, an insert member (preferably a bushing), and a locking cap with a saddle. The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: February 18, 2016Publication date: June 9, 2016Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 9282998Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor (10), a body (20) with a rod-receiving channel, an insert member (40) (preferably a bushing), and a locking cap with a saddle (70). The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: GrantFiled: September 4, 2009Date of Patent: March 15, 2016Assignee: DePuy Synthes Products, Inc.Inventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Patent number: 8388661Abstract: A rod connector (1) is provided for use in attaching a bone anchor (5) to a support rod (3). The connector (1) comprises a first portion (2) defining a clamping means (6) with an aperture (7) in which the support rod (3) can be located, and a second portion (4) defining a first bore (9) in which a stem of the anchor (5) can be inserted. The connector (1) also comprises a means (12) defining a pivot axis (14) enabling it to be connected to an implantation instrument (11) and orientated in a first position wherein the clamping means (6) can be located around a support rod (3) and then rotated around the rod (3) into a second position relative thereto wherein said bone anchor (5) can be inserted into the bore (9) and then secured to an adjacent bone. In addition, the connector defines first and second retaining means (15, 16) enabling it to be retained by the instrument (11) respectively in said first position and in its second position.Type: GrantFiled: August 18, 2005Date of Patent: March 5, 2013Assignee: Synthes USA, LLCInventors: Fridolin J. Schlaepfer, Peter Senn
-
Publication number: 20110160779Abstract: The present invention is directed an anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The anchor assembly preferably includes a bone anchor (10), a body (20) with a rod-receiving channel, an insert member (40) (preferably a bushing), and a locking cap with a saddle (70). The anchor assembly preferably enables in-situ assembly where the bone anchor may be secured to the patient's vertebra prior to being received within the body of the bone anchor assembly. Accordingly, the anchor assembly enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body may be snapped onto the bone anchor and a spinal rod may be inserted into the rod-receiving channel.Type: ApplicationFiled: September 4, 2009Publication date: June 30, 2011Applicant: Synthes USA, LLCInventors: Fridolin J. Schlaepfer, Christian Ammann, Stefan Saladin
-
Publication number: 20100292735Abstract: A rod connector (1) is provided for use in attaching a bone anchor (5) to a support rod (3). The connector (1) comprises a first portion (2) defining a clamping means (6) with an aperture (7) in which the support rod (3) can be located, and a second portion (4) defining a first bore (9) in which a stem of the anchor (5) can be inserted. The connector (1) also comprises a means (12) defining a pivot axis (14) enabling it to be connected to an implantation instrument (11) and orientated in a first position wherein the clamping means (6) can be located around a support rod (3) and then rotated around the rod (3) into a second position relative thereto wherein said bone anchor (5) can be inserted into the bore (9) and thence secured to an adjacent bone. In addition, the connector defines first and second retaining means (15, 16) enabling it to be retained by the instrument (11) respectively in said first position and in its second position.Type: ApplicationFiled: August 18, 2005Publication date: November 18, 2010Inventors: Fridolin J. Schlaepfer, Peter Senn
-
Patent number: 6699249Abstract: The invention relates to a bone fixation device which includes a pair of bone plates and a longitudinal carrier. The longitudinal carrier can be used to permit the bone plates to telescope with respect to one another, such as in a direction parallel to the longitudinal axis of the vertebral column. A joint also may be used to permit swivelling of the plates with respect to each other.Type: GrantFiled: November 14, 2001Date of Patent: March 2, 2004Assignee: Synthes (U.S.A.)Inventors: Fridolin J. Schläpfer, Martin Hess