Patents by Inventor Friederike Fleischhaker

Friederike Fleischhaker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8877657
    Abstract: The present invention relates to a process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps of: (A) preparing a solution comprising at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms, or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides of the corresponding metal and mixtures thereof, in at least one solvent, (B) applying the solution from step (A) to the substrate and (C) thermally treating the substrate from step (B) at a temperature of 20 to 200° C.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: November 4, 2014
    Assignee: BASF SE
    Inventors: Andrey Karpov, Friederike Fleischhaker, Imme Domke, Marcel Kastler, Veronika Wloka, Lothar Weber
  • Patent number: 8734899
    Abstract: The present invention relates to particles which have been modified by a modifier and a dispersion medium comprising the modified particles.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Imme Domke, Andrey Karpov, Hartmut Hibst, Radoslav Parashkov, Ingolf Hennig, Marcel Kastler, Friederike Fleischhaker, Lothar Weber, Peter Eckerle
  • Patent number: 8734949
    Abstract: A method for passivating metallic surfaces, more particularly those of strip metals, by treating the surface in alternating layers with a) an acidic, aqueous preparation comprising at least one water-soluble copolymer (A) containing acid groups and b) an aqueous preparation comprising at least one water-soluble and/or water-dispersible species (B) which contains cationic and/or procationic groups, preferably a cationic and/or procationic polymer (B1), the preparation a) always being the first and the last layer.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Friederike Fleischhaker, Christian Schade
  • Patent number: 8691168
    Abstract: The present invention provides a process for preparing a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10, comprising at least the steps of (A) contacting ZnO and/or Zn(OH)2 with ammonia in at least one solvent in order to obtain a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z each independently 0.01 to 10 with a concentration c1, (B) removing some solvent from the solution from step (A) in order to obtain a suspension comprising Zn(OH)2, (C) removing solid Zn(OH)2 from the suspension from step (B), and (D) contacting the Zn(OH)2 from step (C) with ammonia in at least one solvent in order to obtain a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10 with the concentration c2, and to highly concentrated solutions of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 8, 2014
    Assignee: BASF SE
    Inventors: Veronika Wloka, Friederike Fleischhaker
  • Publication number: 20130209813
    Abstract: A method for passivating metallic surfaces, more particularly those of strip metals, by treating the surface in alternating layers with a) an acidic, aqueous preparation comprising at least one water-soluble copolymer (A) containing acid groups and b) an aqueous preparation comprising at least one water-soluble and/or water-dispersible species (B) which contains cationic and/or procationic groups, preferably a cationic and/or procationic polymer (B1), the preparation a) always being the first and the last layer.
    Type: Application
    Filed: August 8, 2012
    Publication date: August 15, 2013
    Applicant: BASF SE
    Inventors: Friederike FLEISCHHAKER, Christian SCHADE
  • Patent number: 8461296
    Abstract: The invention relates to a process for preparing mechanically stabilized polyazole polymers. The process includes the steps of: a) producing a film comprising polyazoles with at least one amino group in a repeat unit, b) treating the film from step a) with a solution comprising (i) at least one acid and (ii) at least one stabilizing reagent, and c) performing the stabilization reaction in the membrane obtained in step directly or in a subsequent membrane processing step by heating to a temperature greater than 60° C. The stabilizing reagent contains at least one compound which has at least one aldehyde group and at least one hydroxyl group; or at least one hemiacetal group; or at least one acetal group. These polyazole polymer membranes have a high conductivity and a good mechanical stability and are suitable for applications in fuel cells.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: June 11, 2013
    Assignee: BASF SE
    Inventors: Friederike Fleischhaker, Oliver Gronwald, Jörg Belack
  • Publication number: 20130115470
    Abstract: Preparation for passivating metallic surfaces, comprising at least one itaconic acid homopolymer or copolymer (A), water and/or another solvent suitable for dissolving, dispersing, suspending or emulsifying the homopolymer or copolymer (A), as component (B); at least one organic Ti or Zr compound (C); and optionally at least one Zn or Mg salt (D). Process for producing a passivating layer on a metal surface by treating the metal surface with such a preparation. Passivating layer on a metallic surface, obtainable by such a process. Metallic surface comprising such a passivating layer. Use of inventive preparations for passivating a metal surface.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Inventors: Christian Schade, Friederike Fleischhaker, Helmut Witteler
  • Publication number: 20130037175
    Abstract: The present invention relates to an aqueous preparation for passivating metallic surfaces, comprising itaconic acid homopolymers or copolymers and at least one amine- or amide-containing alcohol, to a method for passivating metallic surfaces by treating the surface with the preparation of the invention, to passivating layers and metallic surfaces obtainable by means of the method of the invention, and to the use of the preparation of the invention for passivating a metal surface.
    Type: Application
    Filed: July 17, 2012
    Publication date: February 14, 2013
    Applicant: BASF SE
    Inventors: Friederike Fleischhaker, Christian Schade, Anna Müller-Cristadoro
  • Publication number: 20120328509
    Abstract: The present invention provides a process for preparing a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10, comprising at least the steps of (A) contacting ZnO and/or Zn(OH)2 with ammonia in at least one solvent in order to obtain a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z each independently 0.01 to 10 with a concentration c1, (B) removing some solvent from the solution from step (A) in order to obtain a suspension comprising Zn(OH)2, (C) removing solid Zn(OH)2 from the suspension from step (B), and (D) contacting the Zn(OH)2 from step (C) with ammonia in at least one solvent in order to obtain a solution of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10 with the concentration c2, and to highly concentrated solutions of electrically uncharged [(OH)x(NH3)yZn]z where x, y and z are each independently 0.
    Type: Application
    Filed: April 27, 2011
    Publication date: December 27, 2012
    Applicant: BASF SE
    Inventors: Veronika Wloka, Friederike Fleischhaker
  • Publication number: 20120289654
    Abstract: A process for preparing mechanically stabilized polyazoles, comprising the following steps: I) treating at least one polyazole having at least one amino group in a repeat unit with a solution comprising (i) at least one strong acid and (ii) at least one stabilizing reagent, the total content of stabilizing reagents in the solution being in the range from 0.01 to 30% by weight, II) performing the stabilization reaction directly and/or in a subsequent processing step by heating to a temperature greater than 25° C., the stabilizing reagent used being at least one polyvinyl alcohol. The polyazoles thus obtainable are notable especially for a high conductivity and a very good mechanical stability. They are therefore especially suitable for applications in fuel cells.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 15, 2012
    Applicant: BASF SE
    Inventors: Friederike Fleischhaker, Jörg Belack, Oliver Gronwald
  • Publication number: 20120280228
    Abstract: The present invention relates to a method for producing an electronic component, in particular a field-effect transistor (FET), comprising at least one substrate, at least one dielectric, and at least one semiconducting metal oxide, wherein the dielectric or a precursor compound thereof based on organically modified silicon oxide compounds, in particular based on silsequioxanes and/or siloxanes, can be processed out of solution, and is thermally treated at a low temperature from room temperature to 350° C., and the semiconductive metal oxide, in particular ZnO or a precursor compound thereof, can also be processed from solution at a low temperature from room temperature to 350° C.
    Type: Application
    Filed: December 3, 2010
    Publication date: November 8, 2012
    Applicant: BASF SE
    Inventors: Friederike Fleischhaker, Veronika Wloka, Thomas Kaiser
  • Publication number: 20120252909
    Abstract: The invention relates to a process for preparing mechanically stabilized polyazole polymers. The process includes the steps of: a) producing a film comprising polyazoles with at least one amino group in a repeat unit, b) treating the film from step a) with a solution comprising (i) at least one acid and (ii) at least one stabilizing reagent, and c) performing the stabilization reaction in the membrane obtained in step directly or in a subsequent membrane processing step by heating to a temperature greater than 60° C. The stabilizing reagent contains at least one compound which has at least one aldehyde group and at least one hydroxyl group; or at least one hemiacetal group; or at least one acetal group. These polyazole polymer membranes have a high conductivity and a good mechanical stability and are suitable for applications in fuel cells.
    Type: Application
    Filed: March 23, 2012
    Publication date: October 4, 2012
    Applicant: BASF SE
    Inventors: Friederike Fleischhaker, Oliver Gronwald, Jörg Belack
  • Publication number: 20120086002
    Abstract: The present invention relates to a process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps of: (A) applying a porous layer of at least one semiconductive metal oxide to a substrate, (B) treating the porous layer from step (A) with a solution comprising at least one precursor compound of the semiconductive metal oxide, such that the pores of the porous layer are at least partly filled with this solution and (C) thermally treating the layer obtained in step (B) in order to convert the at least one precursor compound of the semiconductive metal oxide to the semiconductive metal oxide, wherein the at least one precursor compound of the at least one semiconductive metal oxide in step (B) is selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, am
    Type: Application
    Filed: June 15, 2010
    Publication date: April 12, 2012
    Applicant: BASF SE
    Inventors: Friederike Fleischhaker, Imme Domke, Andrey Karpov, Marcel Kastler, Veronika Wloka, Lothar Weber
  • Publication number: 20120043537
    Abstract: The present invention relates to a process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps of: (A) preparing a solution comprising at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms, or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides of the corresponding metal and mixtures thereof, in at least one solvent, (B) applying the solution from step (A) to the substrate and (C) thermally treating the substrate from step (B) at a temperature of 20 to 200° C.
    Type: Application
    Filed: April 26, 2010
    Publication date: February 23, 2012
    Applicant: BASF SE
    Inventors: Andrey Karpov, Friederike Fleischhaker, Imme Domke, Marcel Kastler, Veronika Wloka, Lothar Weber
  • Publication number: 20110311901
    Abstract: A process for preparing mechanically stabilized polyazoles, comprising the following steps: I) treating at least one polyazole having at least one amino group in a repeat unit with a solution comprising (i) at least one strong acid and (ii) at least one stabilizing reagent, the total content of stabilizing reagents in the solution being in the range from 0.01 to 30% by weight, II) performing the stabilization reaction directly and/or in a subsequent processing step by heating to a temperature greater than 25° C., using at least one high-functionality polyether as the stabilizing reagent. The polyazoles thus obtainable are notable especially for a high conductivity and a very good mechanical stability. They are therefore especially suitable for applications in fuel cells.
    Type: Application
    Filed: May 25, 2011
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Friederike Fleischhaker, Anna Cristadoro, Jörg Belack, Oliver Gronwald, Francisco Javier Lopez Villanueva, Bernd Bruchmann
  • Publication number: 20110163278
    Abstract: The present invention relates to particles which have been modified by a modifier and a dispersion medium comprising the modified particles.
    Type: Application
    Filed: August 28, 2009
    Publication date: July 7, 2011
    Inventors: Imme Domke, Andrey Karpov, Hartmut Hibst, Radoslav Rarashkov, Ingolf Hennig, Marcel Kastler, Friederike Fleischhaker, Lothar Weber, Peter Eckerle