Patents by Inventor Friedrich Luther

Friedrich Luther has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11795535
    Abstract: An aluminum-based coating of a flat steel product is applied in a hot-dipping method and comprises a mass percentage of silicon within a given range. The coating for a flat steel product, in particular for press mold hardening components, offers a shortened required minimum oven dwell time and a sufficiently large processing window when heating in an oven. This is achieved in that the surface of the coating has a degree of absorption for thermal radiation ranging between 0.35 and 0.95 prior to an annealing treatment, where the degree of absorption relates to an oven temperature ranging from 880 to 950° C. during the austenitizing annealing treatment. The invention additionally relates to an improved method for producing a flat steel product with an aluminum-based coating, to an inexpensive method for producing press-hardened components from such flat steel products, and to a press-hardened component made of such flat steel products.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: October 24, 2023
    Assignee: Salzgitter Flachstahl GmbH
    Inventors: Marc Debeaux, Friedrich Luther, Thomas Koll
  • Publication number: 20220364191
    Abstract: A method for producing a press-mold-hardened part includes providing a steel strip having an aluminium-based coating; applying an inorganic, iron-containing conversion layer to the aluminium-based coating with a layer weight in relation to iron of 3-30 mg/m2; cold-rolling the steel strip to form a flexibly rolled strip with strip sections of different sheet thickness; cutting an initial sheet metal blank out of the flexibly rolled strip, with the blank having different sheet thicknesses with thinnest and thickest sheet sections; press-mold-hardening the initial sheet metal blank to form a part. Alternatively, the cold-rolling can take place before the cutting, and the application of the conversion layer can take place before or after the cutting, or, instead of the cold-rolling, at least two steel strip sections having an aluminium-based coating and different sheet thicknesses can be welded together, where the application of the conversion layer can take place before or after welding.
    Type: Application
    Filed: September 28, 2020
    Publication date: November 17, 2022
    Inventors: Friedrich Luther, Marc Debeaux, Frank Beier, Kerstin Körner
  • Publication number: 20220220598
    Abstract: A cold-rolled or hot-rolled steel strip having a metal coating, the steel strip having iron as the main constituent and, in addition to carbon, an Mn content of 4.1 to 8.0 wt. % and optionally one or more of the alloy elements Al, Si, Cr, B, Ti, V, Nb and/or Mo. The surface of the uncoated steel strip is cleaned, a layer of pure iron is applied to the cleaned surface, an oxygen-containing iron-based layer is applied to the layer of pure iron and contains more than five mass percent oxygen. The steel strip is then annealed and, to attain a surface consisting substantially of metallic iron, is subjected to a reduction treatment in a reducing furnace while being annealed. The steel strip is then coated with the metallic coating by hot dipping. Uniform and reproducible adhesion conditions are hereby achieved for the metallic coating on the steel strip surface.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 14, 2022
    Inventors: Kai Köhler, Nils Köpper, Friedrich Luther, Marc Debeaux
  • Publication number: 20220170164
    Abstract: A cold- or hot-rolled steel strip with a metallic coating, the steel strip having iron as the main constituent and, in addition to carbon, an Mn content of 8.1 to 25.0 wt. % and optionally one or more of the alloying elements Al, Si, Cr, B, Ti, V, Nb and/or Mo. The uncoated steel strip is first cleaned, a layer of pure iron is applied to the cleaned surface, an oxygen-containing, iron-based layer containing more than five mass percent of oxygen is applied to the layer of pure iron. The steel strip is then annealed and is reduction-treated in a reducing furnace atmosphere during the annealing treatment to obtain a surface consisting mainly of metallic iron. The steel strip is then hot-dip coated with the metallic coating. This creates uniform and reproducible bonding conditions for the coating on the steel strip surface.
    Type: Application
    Filed: March 27, 2020
    Publication date: June 2, 2022
    Inventors: Kai Köhler, Nils Köpper, Friedrich Luther, Marc Debeaux
  • Patent number: 11339479
    Abstract: In a component made of press-form-hardened, aluminium-based coated steel sheet, the coating has a covering which contains aluminum and silicon applied in the hot-dip process. The press-form-hardened component in the transition region between steel sheet and covering has an inter-diffusion zone I, wherein, depending on the layer application of the covering before heating and press hardening, the thickness of the inter-diffusion zone I obeys the following formula: I [?m]<(1/35)×application on both sides [g/m2]+(19/7). Formed on the inter-diffusion zone I is a zone having various intermetallic phases having an average total thickness between 8 and 50 ?m, on which zone there is in turn arranged a covering layer containing aluminum oxide and/or hydroxide having an average thickness of at least 0.05 ?m to at most 5 ?m.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 24, 2022
    Assignees: SALZGITTER FLACHSTAHL GMBH, VOLKSWAGEN AKTIENGESELLSCHAFT
    Inventors: Thomas Koll, Marc Debeaux, Friedrich Luther, Christian Fritzsche, Stefan Mütze, Frank Beier, Matthias Graul, Jan-Frederik Lass, Haucke-Frederik Hartmann
  • Publication number: 20220090250
    Abstract: An aluminum-based coating of a flat steel product is applied in a hot-dipping method and comprises a mass percentage of silicon within a given range. The coating for a flat steel product, in particular for press mold hardening components, offers a shortened required minimum oven dwell time and a sufficiently large processing window when heating in an oven. This is achieved in that the surface of the coating has a degree of absorption for thermal radiation ranging between 0.35 and 0.95 prior to an annealing treatment, where the degree of absorption relates to an oven temperature ranging from 880 to 950° C. during the austenitizing annealing treatment. The invention additionally relates to an improved method for producing a flat steel product with an aluminum-based coating, to an inexpensive method for producing press-hardened components from such flat steel products, and to a press-hardened component made of such flat steel products.
    Type: Application
    Filed: December 27, 2019
    Publication date: March 24, 2022
    Inventors: Marc Debeaux, Friedrich Luther, Thomas Koll
  • Patent number: 10876195
    Abstract: In an aluminium-based coating for steel sheets or steel strips, the coating includes an aluminium-based coat applied in a hot-dip coating method, a covering layer containing aluminium oxide and/or hydroxide being arranged on the coat. The covering layer is produced by plasma oxidation and/or hot water treatment at temperatures of at least 90° C., advantageously at least 95° C., and/or steam treatment at temperatures of at least 90° C., advantageously at least 95° C. Alternatively, the covering layer containing aluminium oxide and/or hydroxide can be produced by anodic oxidation, the coat being produced in a molten bath with a Si content of between 8 and 12 wt. %, and an Fe content of between 1 and 4 wt. %, the remainder being aluminium.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: December 29, 2020
    Assignees: Salzgitter Flachstahl GmbH, Volkswagen Aktiengesellschaft
    Inventors: Thomas Koll, Marc Debeaux, Friedrich Luther, Haucke-Frederik Hartmann, Jan-Frederik Lass, Matthias Graul
  • Patent number: 10822681
    Abstract: A non-scaling heat-treatable steel with particular suitability for producing hardened or die-hardened components is disclosed, characterized by the following chemical composition in % by weight: C 0.04-0.50; Mn 0.5-6.0; Al 0.5-3.0; Si 0.05-3.0; Cr 0.05-3.0; Ni less than 3.0; Cu less than 3.0; Ti 0.0104-?0.050; B 0.0015-?40.0040; P less than 0.10; S less than 0.05; N less than 0.020; remainder iron and unavoidable impurities. Further disclosed is a method for producing a non-scaling hardened component from the steel and a method for producing a hot strip from a steel.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: November 3, 2020
    Assignee: SALZGITTER FLACHSTAHL GMBH
    Inventors: Joachim Schöttler, Friedrich Luther, Stefan Mütze
  • Publication number: 20200308708
    Abstract: In a component made of press-form-hardened, aluminium-based coated steel sheet, the coating has a covering which contains aluminum and silicon applied in the hot-dip process. The press-form-hardened component in the transition region between steel sheet and covering has an inter-diffusion zone I, wherein, depending on the layer application of the covering before heating and press hardening, the thickness of the inter-diffusion zone I obeys the following formula: I [?m]<( 1/35)×application on both sides [g/m2]+( 19/7). Formed on the inter-diffusion zone I is a zone having various intermetallic phases having an average total thickness between 8 and 50 ?m, on which zone there is in turn arranged a covering layer containing aluminum oxide and/or hydroxide having an average thickness of at least 0.05 ?m to at most 5 ?m.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 1, 2020
    Applicants: SALZGITTER FLACHSTAHL GMBH, VOLKSWAGEN AKTIENGESELLSCHAFT
    Inventors: THOMAS KOLL, MARC DEBEAUX, FRIEDRICH LUTHER, CHRISTIAN FRITZSCHE, STEFAN MÜTZE, FRANK BEIER, MATTHIAS GRAUL, JAN-FREDERIK LASS, HAUCKE-FREDERIK HARTMANN
  • Patent number: 10519559
    Abstract: In a method for improving the weldability of high-manganese-containing steel strips which contain (in % by weight) from 6 to 30% of manganese, up to 1% of carbon, up to 15% of aluminum, up to 6% of silicon, up to 6.5% of chromium, up to 4% of copper and also total additions of titanium and zirconium of up to 0.7% and total additions of niobium and vanadium of up to 0.5%, balance iron including unavoidable steel-accompanying elements the steel strips are coated with a zinc-containing corrosion protection layer.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: December 31, 2019
    Assignee: SALZGETTER FLACHSTAHL GMBH
    Inventors: Kai Köhler, Marc Debeaux, Friedrich Luther
  • Patent number: 10273552
    Abstract: In a process for producing a cold- or hot-rolled steel strip from an ultrahigh-strength multiphase steel having a particular composition the required multiphase microstructure is generated during continuous heat treatment. The cold- or hot-rolled steel strip is heated in the continuous heat treatment furnace to a temperature in the range from 700 to 950° C. and the heat-treated steel strip is subsequently cooled from the heat treatment temperature at a cooling rate of from 15 to 100° C./s to a first intermediate temperature of from 300 to 500° C. followed by cooling at a cooling rate of from 15 to 100° C./s to a second intermediate temperature of from 200 to 250° C.; the steel strip is subsequently cooled at a cooling rate of from 2 to 30° C./s in air to room temperature or the cooling at a cooling rate of from 15 to 100° C./s is maintained from the first intermediate temperature to room temperature.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: April 30, 2019
    Assignee: SALZGITTER FLACHSTAHL GMBH
    Inventors: Thomas Schulz, Andreas Wedemeier, Wilfried Sprock, Volker Flaxa, Friedrich Luther, Ingwer Denks, Sven Schulz
  • Patent number: 10246758
    Abstract: The invention relates to a method for producing a component from transformable steel by hot forming, in which a plate first is cut out of a strip or sheet as the pre-material, and is then heated to forming temperature and pre-formed, having an at least partially martensitic transformation structure after forming. Instead of a press mold hardening, the at least partially martensitic transformation structure is created in the pre-material, or in the plate to be formed, by austenitization and quenching already before forming, and then the thus-conditioned plate is reheated after forming, while maintaining the at least partially martensitic transformation structure, to a temperature below the Ac1 transformation temperature, and formed at this temperature.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 2, 2019
    Assignee: SALZGITTER FLACHSTAHL GMBH
    Inventors: Friedrich Luther, Thomas Evertz, Stefan Muetze, Michael Braun
  • Publication number: 20190040513
    Abstract: in an aluminium-based coating for steel sheets or steel strips, the coating includes an aluminium-based coat applied in a hot-dip coating method, a covering layer containing aluminium oxide and/or hydroxide being arranged on the coat. The covering layer is produced by plasma oxidation and/or hot water treatment at temperatures of at least 90° C., advantageously at least 95° C., and/or steam treatment at temperatures of at least 90° C., advantageously at least 95° C. Alternatively, the covering layer containing aluminium oxide and/or hydroxide can be produced by anodic oxidation, the coat being produced in a molten bath with a Si content of between 8 and 12 wt. %, and an Fe content of between 1 and 4 wt. %, the remainder being aluminium.
    Type: Application
    Filed: February 2, 2017
    Publication date: February 7, 2019
    Applicants: Salzgitter Flachstahl GmbH, Volkswagen AG
    Inventors: THOMAS KOLL, MARC DEBEAUX, FRIEDRICH LUTHER, HAUCKE-FREDERIK HARTMANN, JAN-FREDERIK LASS, MATTHIAS GRAUL
  • Publication number: 20180237892
    Abstract: A non-scaling heat-treatable steel with particular suitability for producing hardened or die-hardened components is disclosed, characterized by the following chemical composition in % by weight: C 0.04-0.50; Mn 0.5-6.0; Al 0.5-3.0; Si 0.05-3.0; Cr 0.05-3.0; Ni less than 3.0; Cu less than 3.0; Ti 0.0104-?0.050; B 0.0015-?40.0040; P less than 0.10; S less than 0.05; N less than 0.020; remainder iron and unavoidable impurities. Further disclosed is a method for producing a non-scaling hardened component from the steel and a method for producing a hot strip from a steel.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 23, 2018
    Applicant: Salzgitter Flachstahl GmbH
    Inventors: Joachim Schöttler, Friedrich Luther, Stefan Mütze
  • Patent number: 10036085
    Abstract: A non-scaling heat-treatable steel with particular suitability for producing hardened or die-hardened components is disclosed, characterized by the following chemical composition in % by weight: C 0.04-0.50; Mn 0.5-6.0; Al 0.5-3.0; Si 0.05-3.0; Cr 0.05-3.0; Ni less than 3.0; Cu less than 3.0; Ti 0.010-?0.050; B 0.0015-?0.0040; P less than 0.10; S less than 0.05; N less than 0.020; remainder iron and unavoidable impurities. Further disclosed is a method for producing a non-scaling hardened component from the steel and a method for producing a hot strip from a steel.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: July 31, 2018
    Assignee: SALZGITTER FLACHSTAHL GMBH
    Inventors: Joachim Schöttler, Friedrich Luther, Stefan Mütze
  • Publication number: 20180171424
    Abstract: A deformation-hardened component is made of galvanized steel by cutting a plate from a steel strip or steel sheet coated with zinc or with a zinc-based alloy and subsequently heating the plate to a deformation temperature above Ac3 for deformation and hardening. The galvanized steel has an at least partially martensitic transformation structure and includes as a chemical composition in wt. % C: 0.10-0.50, Si: 0.01-0.50, Mn: 0.50-2.50, P<0.02, S<0.01, N<0.01, Al: 0.015-0.100, B<0.004, remainder iron, including unavoidable smelting-induced, steel-accompanying elements. The chemical composition further includes at least one element selected from the group consisting of Nb, V, Ti, with a sum of the contents Nb+V+Ti being in a range of 0.01 to 0.20 wt. %. The structure of the steel after deformation-hardening has an average grain size of the former austenite grains of <15 ?m.
    Type: Application
    Filed: May 31, 2016
    Publication date: June 21, 2018
    Applicant: SALZGITTER FLACHSTAHL GMBH
    Inventors: MICHAEL BRAUN, FRIEDRICH LUTHER, MANUEL MAIKRANZ-VALENTIN
  • Publication number: 20160281252
    Abstract: In a method for improving the weldability of high-manganese-containing steel strips which contain (in % by weight) from 6 to 30% of manganese, up to 1% of carbon, up to 15% of aluminum, up to 6% of silicon, up to 6.5% of chromium, up to 4% of copper and also total additions of titanium and zirconium of up to 0.7% and total additions of niobium and vanadium of up to 0.5%, balance iron including unavoidable steel-accompanying elements the steel strips are coated with a zinc-containing corrosion protection layer.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 29, 2016
    Applicant: SALZGITTER FLACHSTAHL GMBH
    Inventors: KAI KÖHLER, MARC DEBEAUX, FRIEDRICH LUTHER
  • Publication number: 20160215376
    Abstract: A zinc-based anti-corrosion coating is disclosed for steel sheets or steel strips, which for the purpose of hardening are at least in parts heated to a temperature above Ac3 and then cooled at a temperature situated at least partially above the critical cooling speed, the anti-corrosion coating being a coating applied by hot dipping. In addition to at least 75% by weight zinc and possible unavoidable impurities, the coating also contains 0.5 to 15.0% by weight manganese and 0.1 to 10.
    Type: Application
    Filed: July 24, 2014
    Publication date: July 28, 2016
    Applicant: SALZGITTER FLACHSTAHL GMBH
    Inventors: FRIEDRICH LUTHER, MARC DEBEAUX
  • Publication number: 20150047753
    Abstract: The invention relates to a method for producing a component from transformable steel by hot forming, in which a plate first is cut out of a strip or sheet as the pre-material, and is then heated to forming temperature and pre-formed, having an at least partially martensitic transformation structure after forming. Instead of a press mould hardening, the at least partially martensitic transformation structure is created in the pre-material, or in the plate to be formed, by austenitisation and quenching already before forming, and then the thus-conditioned plate is reheated after forming, while maintaining the at least partially martensitic transformation structure, to a temperature below the Ac1 transformation temperature, and formed at this temperature.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 19, 2015
    Inventors: Friedrich Luther, Thomas Evertz, Stefan Muetze, Michael Braun
  • Publication number: 20150041024
    Abstract: In a process for producing a cold- or hot-rolled steel strip from an ultrahigh-strength multiphase steel having a particular composition the required multiphase microstructure is generated during continuous heat treatment. The cold- or hot-rolled steel strip is heated in the continuous heat treatment furnace to a temperature in the range from 700 to 950° C. and the heat-treated steel strip is subsequently cooled from the heat treatment temperature at a cooling rate of from 15 to 100° C./s to a first intermediate temperature of from 300 to 500° C. followed by cooling at a cooling rate of from 15 to 100° C./s to a second intermediate temperature of from 200 to 250° C.; the steel strip is subsequently cooled at a cooling rate of from 2 to 30° C./s in air to room temperature or the cooling at a cooling rate of from 15 to 100° C./s is maintained from the first intermediate temperature to room temperature.
    Type: Application
    Filed: January 15, 2013
    Publication date: February 12, 2015
    Inventors: Thomas Schulz, Andreas Wedemeier, Wilfried Sprock, Volker Flaxa, Friedrich Luther, Ingwer Denks, Sven Schulz