Patents by Inventor Friedrich RASBORNIG

Friedrich RASBORNIG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11855789
    Abstract: Embodiments relate to a controller operable to transmit digital data messages to a receiver via a communication link having at least a first and a second transmission path, the controller comprising a first signal terminal the first transmission path and a second signal terminal for the second transmission path. The first signal terminal is operable to digitally transmit a first message to the receiver according to a first transmission technique and the second signal terminal is being operable to digitally transmit a second message to the receiver according to a second, different transmission technique.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: December 26, 2023
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Rasbornig, Wolfgang Granig, Bernhard Schaffer, Wolfgang Scherr, Michael Strasser
  • Patent number: 11804951
    Abstract: The described techniques facilitate the secure transmission of sensor measurement data to an ECU by implementing an authentication procedure. The authentication procedure includes an integrated circuit (IC) generating authentication tags by encrypting portions of sensor measurement data. These authentication tags are then transmitted together with the sensor measurement data as authenticated sensor measurement data. The ECU may then use the authentication tags to authenticate the sensor measurement data based upon a comparison of the portions of the sensor measurement data sensor measurement data to the authentication tag that is expected to be generated for those portions of sensor measurement data.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 31, 2023
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Rasbornig, Hans-Joerg Wagner, Dirk Hammerschmidt, Tobias Werth
  • Publication number: 20230305048
    Abstract: Some described techniques address issues of latency and lengthy processing times associated with conventional redundant sensor measurement systems that rely upon digital transmission protocols by implementing a diverse analog sensor interface architecture. Additional described techniques provide a redundant signaling solution to achieve signaling diversity using a combination of analog and digital sensor interface architectures. The described architectures may advantageously use a number of sensor measurement paths that may be independent of one another or share any suitable number of common components to provide varying levels of redundancy. When redundant analog sensor interface architectures are implemented, the analog interfaces may also provide signal diversity with respect to the use of different types of analog transmission protocols, which may include different signaling interfaces (e.g. differential versus single-ended), different transmission interfaces (e.g.
    Type: Application
    Filed: June 5, 2023
    Publication date: September 28, 2023
    Inventors: Friedrich Rasbornig, Dirk Hammerschmidt, Bernhard Schaffer, Hans-Jörg Wagner
  • Patent number: 11740107
    Abstract: A sensor system for sensing movement of an object, including: a first sensor providing a first signal along a first signal path on a semiconductor chip, the first signal being used to determine a first characteristic of the movement; a second sensor providing a second signal along a second signal path on the semiconductor chip, the second signal being used to determine a second characteristic of the movement; and an alarm circuit configured to issue a fault warning when there is a violation of a predefined relationship between the first signal and the second signal based on a missing or additional portion of the first signal or the second signal.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: August 29, 2023
    Assignee: Infineon Technologies AG
    Inventors: Bernhard Forster, Friedrich Rasbornig
  • Patent number: 11733260
    Abstract: A sensor device is provided with a magnetic field sensitive element being positioned in a magnetic field of a magnet. The magnetic field sensitive element is configured to sense an orientation angle of the magnetic field in the range between 0° and 360° and generate a sensing signal. The electronic circuitry is configured to receive and process the sensing signal from the magnetic field sensitive element to generate an angle signal indicating the orientation angle of the magnetic field and an angular speed of the shaft.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: August 22, 2023
    Assignee: Infineon Technologies AG
    Inventors: Helmut Koeck, Leo Aichriedler, Dirk Hammerschmidt, Andrea Monterastelli, Friedrich Rasbornig, Peter Slama, Dietmar Spitzer, Tobias Werth, Harald Witschnig
  • Patent number: 11689326
    Abstract: The described techniques address the issues of latency and lengthy processing times associated with conventional redundant sensor measurement systems that rely upon digital transmission protocols by implementing a diverse analog sensor interface architecture. The described architecture may advantageously use a number of sensor measurement paths that may be independent of one another or share any suitable number of common components to provide varying levels of redundancy. The analog interfaces may provide signal diversity with respect to the use of different types of analog transmission protocols, which may include different signaling interfaces (e.g. differential versus single-ended), different transmission interfaces (e.g. voltage versus current interfaces), and/or the use of different signalization schemes.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: June 27, 2023
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Rasbornig, Bernhard Schaffer, Hans-Joerg Wagner, Dirk Hammerschmidt
  • Patent number: 11669384
    Abstract: A fault detection system includes a sensor configured to measure a physical quantity and generate a measurement of the physical quantity; a first processor configured to receive the measurement, execute a first firmware based on the measurement, and output a first result of the executed first firmware; a second processor configured to receive the measurement from the sensor, execute a second firmware based on the measurement, and output a second result of the executed second firmware, wherein the first firmware and the second firmware provide a same nominal function in a diverse manner for calculating the first result and the second result, respectively, such that the first result and the second result are expected to be within a predetermined margin; and a fault detection circuit configured to detect a fault when the first result and the second result are not within the predetermined margin.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: June 6, 2023
    Assignee: Infineon Technologies AG
    Inventors: Thomas Zettler, Dirk Hammerschmidt, Friedrich Rasbornig, Michael Strasser, Akos Hegedus, Wolfgang Granig
  • Publication number: 20230020730
    Abstract: The described techniques facilitate the secure transmission of sensor measurement data to an ECU by implementing an authentication procedure. The authentication procedure includes an integrated circuit (IC) generating authentication tags by encrypting portions of sensor measurement data. These authentication tags are then transmitted together with the sensor measurement data as authenticated sensor measurement data. The ECU may then use the authentication tags to authenticate the sensor measurement data based upon a comparison of the portions of the sensor measurement data sensor measurement data to the authentication tag that is expected to be generated for those portions of sensor measurement data.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 19, 2023
    Inventors: Friedrich Rasbornig, Hans-Joerg Wagner, Dirk Hammerschmidt, Tobias Werth
  • Publication number: 20220373318
    Abstract: An angle sensor may include a first angle measurement path to determine an angular position based on sensor values from a first set of sensing elements. The angle sensor may include a second angle measurement path to determine the angular position based on sensor values from a second set of sensing elements. A type of the second set of sensing elements is different from a type of the first set of sensing elements. The angle sensor may include a safety path to perform a set of safety checks, the set of safety checks including a first vector length check associated with the first angle measurement path and a second vector length check associated with the second angle measurement path. The angle sensor may include an output component to provide an indication of a result of the set of safety checks.
    Type: Application
    Filed: May 24, 2021
    Publication date: November 24, 2022
    Inventors: Friedrich RASBORNIG, Wolfgang GRANIG, Dirk HAMMERSCHMIDT, Benjamin KOLLMITZER, Bernhard SCHAFFER
  • Publication number: 20220326002
    Abstract: An inductive sensor may include a first angle measurement path associated with determining an angular position based on a first set of input signals. The inductive sensor may include a second angle measurement path associated with determining an angular position based on a second set of input signals. The inductive sensor may include an amplitude regulation path associated with regulating amplitudes of a set of output signals. The inductive sensor may include a safety path associated with performing one or more safety checks. Each safety check of the one or more safety checks may be associated with at least one of the first angle measurement path, the second angle measurement path, or the amplitude regulation path.
    Type: Application
    Filed: April 13, 2021
    Publication date: October 13, 2022
    Inventors: Friedrich RASBORNIG, Dirk HAMMERSCHMIDT, Tobias WERTH
  • Patent number: 11438017
    Abstract: An apparatus (100) for providing an joint error correction code (140) for a combined data frame (254) comprising first data (112) of a first data channel and second data (122) of a second data channel comprises a first error code generator (110) configured to provide, based on a linear code, information on a first error correction code (114a, 114b) using the first data (112). The apparatus further comprises a second error code generator (120) configured to provide, based on the linear code, information on a second error correction code (124) using the second data (122). The apparatus is configured to provide the joint error correction code (140) using the information on the first error correction code (114a, 114b) and the information on the second error correction code (124).
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: September 6, 2022
    Assignee: Infineon Technologies AG
    Inventors: Dirk Hammerschmidt, Friedrich Rasbornig, Wolfgang Scheibenzuber, Wolfgang Scherr, Thomas Zettler
  • Patent number: 11359936
    Abstract: A system is provided with a magnetic field sensor being positioned in a magnetic field of a magnet that is coupled to a rotatable driving shaft. The magnetic field sensor is configured to sense a rotation of the magnetic field in response to a rotation of the rotatable driving shaft, and generate an angle sensor signal based on an orientation angle of the magnetic field. The angle sensor signal includes angular values that represent an absolute orientation angle of the rotatable driving shaft. The system includes a memory storing a mapping of values of a patterned signal to the angular values, electronic circuitry configured to generate, based on the angular values and the stored mapping, the patterned signal, and a signal generator circuit configured to generate a signal representing the absolute orientation angle of the rotatable driving shaft based on the angle sensor signal.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: June 14, 2022
    Inventors: Dietmar Spitzer, Peter Slama, Harald Witschnig, Leo Aichriedler, Friedrich Rasbornig
  • Publication number: 20220075680
    Abstract: A fault detection system includes a sensor configured to measure a physical quantity and generate a measurement of the physical quantity; a first processor configured to receive the measurement, execute a first firmware based on the measurement, and output a first result of the executed first firmware; a second processor configured to receive the measurement from the sensor, execute a second firmware based on the measurement, and output a second result of the executed second firmware, wherein the first firmware and the second firmware provide a same nominal function in a diverse manner for calculating the first result and the second result, respectively, such that the first result and the second result are expected to be within a predetermined margin; and a fault detection circuit configured to detect a fault when the first result and the second result are not within the predetermined margin.
    Type: Application
    Filed: November 19, 2021
    Publication date: March 10, 2022
    Applicant: Infineon Technologies AG
    Inventors: Thomas Zettler, Dirk Hammerschmidt, Friedrich Rasbornig, Michael Strasser, Akos Hegedus, Wolfgang Granig
  • Patent number: 11245673
    Abstract: A method for communicating data from a sensor device to an Electronic Control Unit using a single-wire bi-directional communication protocol includes providing a first key of the Electronic Control Unit to the sensor device, encrypting sensor data of the sensor device using the first key to determine encrypted data, and transmitting the encrypted data from the sensor device to the Electronic Control Unit.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: February 8, 2022
    Assignee: Infineon Technologies AG
    Inventor: Friedrich Rasbornig
  • Publication number: 20220038222
    Abstract: The described techniques address the issues of latency and lengthy processing times associated with conventional redundant sensor measurement systems that rely upon digital transmission protocols by implementing a diverse analog sensor interface architecture. The described architecture may advantageously use a number of sensor measurement paths that may be independent of one another or share any suitable number of common components to provide varying levels of redundancy. The analog interfaces may provide signal diversity with respect to the use of different types of analog transmission protocols, which may include different signaling interfaces (e.g. differential versus single-ended), different transmission interfaces (e.g. voltage versus current interfaces), and/or the use of different signalization schemes.
    Type: Application
    Filed: July 29, 2020
    Publication date: February 3, 2022
    Inventors: Friedrich Rasbornig, Bernhard Schaffer, Hans-Joerg Wagner, Dirk Hammerschmidt
  • Publication number: 20210405081
    Abstract: A sensor device is provided with a magnetic field sensitive element being positioned in a magnetic field of a magnet. The magnetic field sensitive element is configured to sense an orientation angle of the magnetic field in the range between 0° and 360° and generate a sensing signal. The electronic circuitry is configured to receive and process the sensing signal from the magnetic field sensitive element to generate an angle signal indicating the orientation angle of the magnetic field and an angular speed of the shaft.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Helmut Koeck, Leo Aichriedler, Dirk Hammerschmidt, Andrea Monterastelli, Friedrich Rasbornig, Peter Slama, Dietmar Spitzer, Tobias Werth, Harald Witschnig
  • Patent number: 11188410
    Abstract: Fault detection devices, systems, and methods are provided which implement identical processors. A first processor is configured to receive a first measurement, execute a first firmware based on the first measurement, and output a first result of the executed first firmware. A second processor is configured to receive a second measurement, execute a second firmware based on the second measurement, and output a second result of the executed second firmware. The first firmware and the second firmware provide a same nominal function in a diverse manner for calculating the first result and the second result, respectively, such that the first result and the second result are expected to be within a predetermined margin.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: November 30, 2021
    Inventors: Thomas Zettler, Dirk Hammerschmidt, Friedrich Rasbornig, Michael Strasser, Akos Hegedus, Wolfgang Granig
  • Publication number: 20210348953
    Abstract: A sensor system for sensing movement of an object, including: a first sensor providing a first signal along a first signal path on a semiconductor chip, the first signal being used to determine a first characteristic of the movement; a second sensor providing a second signal along a second signal path on the semiconductor chip, the second signal being used to determine a second characteristic of the movement; and an alarm circuit configured to issue a fault warning when there is a violation of a predefined relationship between the first signal and the second signal based on a missing or additional portion of the first signal or the second signal.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Bernhard Forster, Friedrich Rasbornig
  • Patent number: 11125768
    Abstract: A sensor device is provided with a magnetic field sensitive element being positioned in a magnetic field of a magnet. The magnetic field sensitive element is configured to sense an orientation angle of the magnetic field in the range between 0° and 360° and generate a sensing signal. The electronic circuitry is configured to receive and process the sensing signal from the magnetic field sensitive element to generate an angle signal indicating the orientation angle of the magnetic field.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 21, 2021
    Assignee: Infineon Technologies AG
    Inventors: Helmut Koeck, Leo Aichriedler, Dirk Hammerschmidt, Andrea Monterastelli, Friedrich Rasbornig, Peter Slama, Dietmar Spitzer, Tobias Werth, Harald Witschnig
  • Patent number: 11067415
    Abstract: A sensor system and an alerting unit. The sensor system according to the invention may comprise first sensing element configured to measure a first signal indicative of a velocity of a movement of an object and a second sensing element configured to measure a second signal indicative of a direction of the movement, further comprising an alerting unit configured to issue a warning if a predefined relationship between the first signal and the second signal is being violated. The invention further teaches an alerting unit configured to monitor a predefined relationship between a first signal and a second signal and further configured to issue a warning should the predefined relationship become violated.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: July 20, 2021
    Assignee: Infineon Technologies AG
    Inventors: Bernhard Forster, Friedrich Rasbornig