Patents by Inventor Fu-Jen Wang

Fu-Jen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Patent number: 11961808
    Abstract: At least some embodiments of the present disclosure relate to an electronic package structure. The electronic package structure includes an electronic structure, a wiring structure disposed over the electronic structure, a bonding element connecting the wiring structure and the electronic structure, and a reinforcement element attached to the wiring structure. An elevation difference between a highest point and a lowest point of a surface of the wiring structure facing the electronic structure is less than a height of the bonding element.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: April 16, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Wei-Jen Wang, Po-Jen Cheng, Fu-Yuan Chen, Yi-Hsin Cheng
  • Patent number: 10346034
    Abstract: A method for dynamically generating a personalized handwriting character font includes inputting a plurality of handwriting sequentially through an input interface. Each handwriting describes a character. Then, the positions of strokes of characters in the input interface described by the plurality of handwriting are identified. Next, font characteristics of the characters are determined according to the positions of strokes in the input interface. A personalized handwriting character font characteristic is determined according to the font characteristics. Finally, a new character font file with a personalized handwriting character font is generated according to the personalized handwriting character font characteristic.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: July 9, 2019
    Assignee: DynaComware Taiwan Inc.
    Inventors: Fu-Jen Wang, Ji-Ming Chen, Ann Lee
  • Publication number: 20170109034
    Abstract: A method for dynamically generating a personalized handwriting character font includes inputting a plurality of handwriting sequentially through an input interface. Each handwriting describes a character. Then, the positions of strokes of characters in the input interface described by the plurality of handwriting are identified. Next, font characteristics of the characters are determined according to the positions of strokes in the input interface. A personalized handwriting character font characteristic is determined according to the font characteristics. Finally, a new character font file with a personalized handwriting character font is generated according to the personalized handwriting character font characteristic.
    Type: Application
    Filed: September 13, 2016
    Publication date: April 20, 2017
    Inventors: Fu-Jen WANG, Ji-Ming CHEN, Ann LEE
  • Patent number: 8580353
    Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: November 12, 2013
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Chien-Min Weng, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
  • Publication number: 20120247953
    Abstract: The invention relates to a film coating system. The system includes serially arranged working zones including a rough vacuum feeding section, a high vacuum feeding section, an optical layer coating zone, a pretreatment zone, a transparent conductive layer coating zone and a pressure balanced exhausting zone. The system further includes a conveyor device for carrying a substrate which has been provided on its periphery with an ink frame layer and for delivering the substrate to the respective working zones, and a controlling device that controls the times for the substrate to be retained in the respective working zones based upon a time interval between the entry of two successive conveyor devices into the rough vacuum feeding section. The invention ensures a smooth operation of the production line, and the transparent conductive film coated thereby does not easily exfoliate and exhibits the advantageous properties of high optical performance and low surface resistance.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Inventors: CHIEN-MIN WENG, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang, Feng-Shiang Yao
  • Publication number: 20120213949
    Abstract: The invention relates to a method for producing a transparent indium tin oxide conductive layer on a substrate. The method involves using a target having a low indium-to-tin ratio in a low temperature manufacturing process (less than 200° C.), and introducing a plasma gas and a reaction gas into the reaction chamber to allow sputtering of an indium tin oxide layer on the substrate under a low oxygen environment, followed by subjecting the sputtered substrate to a heat treatment at 150˜200° C. for 60˜90 minutes. The indium tin oxide layer thus produced will crystallize completely and have the advantageous properties of low surface resistance and high uniformity.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Inventors: CHIEN-MIN WENG, SHIH-LIANG CHOU, TZU-WEN CHU, FU-JEN WANG, FENG-SHIANG YAO
  • Patent number: 8245535
    Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 21, 2012
    Assignees: Applied Vacuum Coating Technologies Co., Ltd., Avct Optical Electronic Co., Ltd.
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng
  • Publication number: 20120009354
    Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Inventors: CHIEN-MIN WENG, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
  • Publication number: 20110234507
    Abstract: The present invention provides an integrated touch panel comprising a transparent substrate, one of an icon or artwork layer, a first layer of optical film, and a first sensing layer. The icon layer or artwork layer is coated on the periphery of one side face of the transparent substrate, and the inner periphery of the icon layer or artwork layer is not perpendicular to the adjacent line of the transparent substrate. The first layer of optical film is stacked on icon layer or artwork layer and the areas on the transparent substrate uncovered with icon layer. The first sensing layer is stacked on the first layer of optical film by sputtering. The interchangeability is included in the patent claim of the present invention. As icon layer or artwork layer is not perpendicular to the transparent substrate, the subsequent cladding of the structures may be completed by sputtering or other methods.
    Type: Application
    Filed: July 30, 2010
    Publication date: September 29, 2011
    Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTD.
    Inventors: SHIH-LIANG CHOU, HSUEH-CHIH CHIANG, CHIEN-MIN WENG, TZU-WEN CHU, FU-JEN WANG, I-WEN LEE, HSING-YEH CHEN
  • Publication number: 20110056244
    Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
    Type: Application
    Filed: October 8, 2009
    Publication date: March 10, 2011
    Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTD
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng