Patents by Inventor Fukuo Owada

Fukuo Owada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210257376
    Abstract: In a semiconductor memory device, voltage application from a memory gate electrode of the memory capacitor to a word line can be blocked by a rectifier element depending on values of voltages applied to the memory gate electrode and the word line without using a conventional control circuit. The configuration eliminates the need to provide a switch transistor and a switch control circuit for turning on and off the switch transistor as in conventional cases, and accordingly achieves downsizing. In the semiconductor memory device, for example, each bit line contact is shared by four anti-fuse memories adjacent to each other and each word line contact is shared by four anti-fuse memories adjacent to each other, thereby achieving downsizing of the entire device as compared to a case in which the bit line contact and the word line contact are individually provided to each anti-fuse memory.
    Type: Application
    Filed: April 16, 2021
    Publication date: August 19, 2021
    Inventors: Daisuke OKADA, Kazumasa YANAGISAWA, Fukuo OWADA, Shoji YOSHIDA, Yasuhiko KAWASHIMA, Shinji YOSHIDA, Yasuhiro TANIGUCHI, Kosuke OKUYAMA
  • Patent number: 11011530
    Abstract: When a memory cell (MC) is downsized by reducing the distance between a drain region (12a) and a source region (12b) on the surface of a fin (S2) with a high impurity concentration inside the fin (S2), the shape of the fin (S2) can be set such that a potential difference between a memory gate electrode (MG) and the fin (S2) is reduced to suppress the occurrence of disturbance. Accordingly, the memory cell (MC) achieves downsizing and suppression of the occurrence of disturbance.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: May 18, 2021
    Assignee: FLOADIA CORPORATION
    Inventors: Daisuke Okada, Kazumasa Yanagisawa, Fukuo Owada, Shoji Yoshida, Yasuhiko Kawashima, Shinji Yoshida, Yasuhiro Taniguchi, Kosuke Okuyama
  • Patent number: 10615168
    Abstract: A memory cell includes a memory gate structure, a first select gate structure, and a second select gate structure. In the memory gate structure, a lower memory gate insulating film, a charge storage layer, an upper memory gate insulating film, and a metal memory gate electrode are stacked in this order. The first select gate structure includes a metal first select gate electrode along a first sidewall spacer provided on a sidewall of the memory gate structure. The second select gate structure includes a metal second select gate electrode along a second sidewall spacer provided on another sidewall of the memory gate structure. Thus, the metal memory gate electrode, the metal first select gate electrode, and the metal second select gate electrode can be formed of a same metallic material as a metal logic gate electrode, permitting the memory cell to be formed together with the metal logic gate electrode.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 7, 2020
    Assignee: FLOADIA CORPORATION
    Inventors: Shoji Yoshida, Fukuo Owada, Daisuke Okada, Yasuhiko Kawashima, Shinji Yoshida, Kazumasa Yanagisawa, Yasuhiro Taniguchi
  • Publication number: 20190371799
    Abstract: A memory cell includes a memory gate structure, a first select gate structure, and a second select gate structure. In the memory gate structure, a lower memory gate insulating film, a charge storage layer, an upper memory gate insulating film, and a metal memory gate electrode are stacked in this order. The first select gate structure includes a metal first select gate electrode along a first sidewall spacer provided on a sidewall of the memory gate structure. The second select gate structure includes a metal second select gate electrode along a second sidewall spacer provided on another sidewall of the memory gate structure. Thus, the metal memory gate electrode, the metal first select gate electrode, and the metal second select gate electrode can be formed of a same metallic material as a metal logic gate electrode, permitting the memory cell to be formed together with the metal logic gate electrode.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Shoji YOSHIDA, Fukuo OWADA, Daisuke OKADA, Yasuhiko KAWASHIMA, Shinji YOSHIDA, Kazumasa YANAGISAWA, Yasuhiro TANIGUCHI
  • Patent number: 10431589
    Abstract: A memory cell includes a memory gate structure, a first select gate structure, and a second select gate structure. In the memory gate structure, a lower memory gate insulating film, a charge storage layer, an upper memory gate insulating film, and a metal memory gate electrode are stacked in this order. The first select gate structure includes a metal first select gate electrode along a first sidewall spacer provided on a sidewall of the memory gate structure. The second select gate structure includes a metal second select gate electrode along a second sidewall spacer provided on another sidewall of the memory gate structure. Thus, the metal memory gate electrode, the metal first select gate electrode, and the metal second select gate electrode can be formed of a same metallic material as a metal logic gate electrode, permitting the memory cell to be formed together with the metal logic gate electrode.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: October 1, 2019
    Assignee: FLOADIA CORPORATION
    Inventors: Shoji Yoshida, Fukuo Owada, Daisuke Okada, Yasuhiko Kawashima, Shinji Yoshida, Kazumasa Yanagisawa, Yasuhiro Taniguchi
  • Publication number: 20190296030
    Abstract: When a memory cell (MC) is downsized by reducing the distance between a drain region (12a) and a source region (12b) on the surface of a fin (S2) with a high impurity concentration inside the fin (S2), the shape of the fin (S2) can be set such that a potential difference between a memory gate electrode (MG) and the fin (S2) is reduced to suppress the occurrence of disturbance. Accordingly, the memory cell (MC) achieves downsizing and suppression of the occurrence of disturbance.
    Type: Application
    Filed: June 7, 2019
    Publication date: September 26, 2019
    Inventors: Daisuke OKADA, Kazumasa YANAGISAWA, Fukuo OWADA, Shoji YOSHIDA, Yasuhiko KAWASHIMA, Shinji YOSHIDA, Yasuhiro TANIGUCHI, Kosuke OKUYAMA
  • Patent number: 10381446
    Abstract: A memory cell and a non-volatile semiconductor memory device are disclosed. Nitride sidewall layers are respectively disposed in a first sidewall spacer and a second sidewall spacer, to separate a memory gate electrode and a first select gate electrode from each other and the memory gate electrode and a second select gate electrode from each other. Hence, a breakdown voltage is improved around the memory gate electrode as compared with a conventional case in which the first sidewall spacer and the second sidewall spacer are simply made of insulating oxide films. The nitride sidewall layers are disposed farther from a memory well than a charge storage layer. Hence, charge is unlikely to be injected into the nitride sidewall layers at charge injection from the memory well into the charge storage layer, thereby preventing an operation failure due to charge storage in a region other than the charge storage layer.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: August 13, 2019
    Assignee: FLOADIA CORPORATION
    Inventors: Yasuhiro Taniguchi, Fukuo Owada, Yasuhiko Kawashima, Shinji Yoshida, Kosuke Okuyama
  • Patent number: 10373967
    Abstract: When a memory cell (MC) is downsized by reducing the distance between a drain region (12a) and a source region (12b) on the surface of a fin (S2) with a high impurity concentration inside the fin (S2), the shape of the fin (S2) can be set such that a potential difference between a memory gate electrode (MG) and the fin (S2) is reduced to suppress the occurrence of disturbance. Accordingly, the memory cell (MC) achieves downsizing and suppression of the occurrence of disturbance.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 6, 2019
    Assignee: FLOADIA CORPORATION
    Inventors: Daisuke Okada, Kazumasa Yanagisawa, Fukuo Owada, Shoji Yoshida, Yasuhiko Kawashima, Shinji Yoshida, Yasuhiro Taniguchi, Kosuke Okuyama
  • Patent number: 10276727
    Abstract: A semiconductor integrated circuit device includes first and second select gate electrodes that are sidewall-shaped along sidewalls of a memory gate structure. With this configuration, the memory gate structure is not disposed on the first select gate electrode and the second select gate electrode. Accordingly, the memory gate structure the first select gate structure, and the second select gate structure can have equal heights, thereby achieving reduction in size as compared to a conventional case. In addition, a silicide layer on the first select gate electrode and a silicide layer on the second select gate electrode can be separated farther from a memory gate electrode by the thickness of a cap film. Accordingly, the silicide layers on the first select gate electrode and the second select gate electrode are unlikely to contact with the memory gate electrode, thereby preventing a short-circuit defect of the memory gate electrode.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: April 30, 2019
    Assignee: FLOADIA CORPORATION
    Inventors: Fukuo Owada, Yasuhiko Kawashima, Shinji Yoshida, Yasuhiro Taniguchi, Kosuke Okuyama
  • Publication number: 20180308990
    Abstract: A semiconductor integrated circuit device includes first and second select gate electrodes that are sidewall-shaped along sidewalls of a memory gate structure. With this configuration, the memory gate structure is not disposed on the first select gate electrode and the second select gate electrode. Accordingly, the memory gate structure the first select gate structure, and the second select gate structure can have equal heights, thereby achieving reduction in size as compared to a conventional case. In addition, a silicide layer on the first select gate electrode and a silicide layer on the second select gate electrode can be separated farther from a memory gate electrode by the thickness of a cap film. Accordingly, the silicide layers on the first select gate electrode and the second select gate electrode are unlikely to contact with the memory gate electrode, thereby preventing a short-circuit defect of the memory gate electrode.
    Type: Application
    Filed: April 26, 2016
    Publication date: October 25, 2018
    Inventors: Fukuo OWADA, Yasuhiko KAWASHIMA, Shinji YOSHIDA, Yasuhiro TANIGUCHI, Kosuke OKUYAMA
  • Publication number: 20180286875
    Abstract: When a memory cell (MC) is downsized by reducing the distance between a drain region (12a) and a source region (12b) on the surface of a fin (S2) with a high impurity concentration inside the fin (S2), the shape of the fin (S2) can be set such that a potential difference between a memory gate electrode (MG) and the fin (S2) is reduced to suppress the occurrence of disturbance. Accordingly, the memory cell (MC) achieves downsizing and suppression of the occurrence of disturbance.
    Type: Application
    Filed: December 7, 2016
    Publication date: October 4, 2018
    Applicant: Floadia Corporation
    Inventors: Daisuke OKADA, Kazumasa YANAGISAWA, Fukuo OWADA, Shoji YOSHIDA, Yasuhiko KAWASHIMA, Shinji YOSHIDA, Yasuhiro TANIGUCHI, Kosuke OKUYAMA
  • Patent number: 10074660
    Abstract: In a semiconductor memory device, voltage application from a memory gate electrode of the memory capacitor to a word line can be blocked by a rectifier element depending on values of voltages applied to the memory gate electrode and the word line without using a conventional control circuit. The configuration eliminates the need to provide a switch transistor and a switch control circuit for turning on and off the switch transistor as in conventional cases, and accordingly achieves downsizing. In the semiconductor memory device, for example, each bit line contact is shared by four anti-fuse memories adjacent to each other and each word line contact is shared by four anti-fuse memories adjacent to each other, thereby achieving downsizing of the entire device as compared to a case in which the bit line contact and the word line contact are individually provided to each anti-fuse memory.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: September 11, 2018
    Assignee: FLOADIA CORPORATION
    Inventors: Hideo Kasai, Yasuhiro Taniguchi, Yasuhiko Kawashima, Ryotaro Sakurai, Yutaka Shinagawa, Tatsuro Toya, Takanori Yamaguchi, Fukuo Owada, Shinji Yoshida, Teruo Hatada, Satoshi Noda, Takafumi Kato, Tetsuya Muraya, Kosuke Okuyama
  • Publication number: 20180211965
    Abstract: A memory cell includes a memory gate structure, a first select gate structure, and a second select gate structure. In the memory gate structure, a lower memory gate insulating film, a charge storage layer, an upper memory gate insulating film, and a metal memory gate electrode are stacked in this order. The first select gate structure includes a metal first select gate electrode along a first sidewall spacer provided on a sidewall of the memory gate structure. The second select gate structure includes a metal second select gate electrode along a second sidewall spacer provided on another sidewall of the memory gate structure. Thus, the metal memory gate electrode, the metal first select gate electrode, and the metal second select gate electrode can be formed of a same metallic material as a metal logic gate electrode, permitting the memory cell to be formed together with the metal logic gate electrode.
    Type: Application
    Filed: July 21, 2016
    Publication date: July 26, 2018
    Inventors: Shoji YOSHIDA, Fukuo OWADA, Daisuke OKADA, Yasuhiko KAWASHIMA, Shinji YOSHIDA, Kazumasa YANAGISAWA, Yasuhiro TANIGUCHI
  • Publication number: 20180197958
    Abstract: A semiconductor integrated circuit device includes first and second select gate electrodes that are sidewall-shaped along sidewalls of a memory gate structure. With this configuration, the memory gate structure is not disposed on the first select gate electrode and the second select gate electrode. Accordingly, the memory gate structure the first select gate structure, and the second select gate structure can have equal heights, thereby achieving reduction in size as compared to a conventional case. In addition, a silicide layer on the first select gate electrode and a silicide layer on the second select gate electrode can be separated farther from a memory gate electrode by the thickness of a cap film. Accordingly, the silicide layers on the first select gate electrode and the second select gate electrode are unlikely to contact with the memory gate electrode, thereby preventing a short-circuit defect of the memory gate electrode.
    Type: Application
    Filed: May 27, 2016
    Publication date: July 12, 2018
    Inventors: Yasuhiro TANIGUCHI, Fukuo OWADA, Yasuhiko KAWASHIMA, Shinji YOSHIDA, Kosuke OKUYAMA
  • Patent number: 9947679
    Abstract: An improvement is achieved in the performance of a semiconductor device. Over a first insulating film formed over a main surface of a semiconductor substrate located in a memory formation region and having an internal charge storage portion and over a second insulating film formed over the main surface of the semiconductor substrate located in a main circuit formation region, a conductive film is formed. Then, in the memory formation region, the conductive film and the first insulating film are patterned to form a first gate electrode and a first gate insulating film while, in the main circuit formation region, the conductive film and the second insulating film are left. Then, in the main circuit formation region, the conductive film and the second insulating film are patterned to form a second gate electrode and a second gate insulating film.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: April 17, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Fukuo Owada, Masaaki Shinohara, Takahiro Maruyama
  • Publication number: 20180019248
    Abstract: In a semiconductor memory device, voltage application from a memory gate electrode of the memory capacitor to a word line can be blocked by a rectifier element depending on values of voltages applied to the memory gate electrode and the word line without using a conventional control circuit. The configuration eliminates the need to provide a switch transistor and a switch control circuit for turning on and off the switch transistor as in conventional cases, and accordingly achieves downsizing. In the semiconductor memory device, for example, each bit line contact is shared by four anti-fuse memories adjacent to each other and each word line contact is shared by four anti-fuse memories adjacent to each other, thereby achieving downsizing of the entire device as compared to a case in which the bit line contact and the word line contact are individually provided to each anti-fuse memory.
    Type: Application
    Filed: February 19, 2016
    Publication date: January 18, 2018
    Inventors: Hideo KASAI, Yasuhiro TANIGUCHI, Yasuhiko KAWASHIMA, Ryotaro SAKURAI, Yutaka SHINAGAWA, Tatsuro TOYA, Takanori YAMAGUCHI, Fukuo OWADA, Shinji YOSHIDA, Teruo HATADA, Satoshi NODA, Takafumi KATO, Tetsuya MURAYA, Kosuke OKUYAMA
  • Patent number: 9685453
    Abstract: To provide a semiconductor device having mix-loaded therein a nonvolatile memory cell and a field effect transistor at a reduced cost. A method of manufacturing a semiconductor device includes pattering a conductor film by using an additional mask that covers a gate electrode formation region of a memory formation region and exposes a main circuit formation region (field effect transistor formation region) and thereby forming a gate electrode of a nonvolatile memory cell in the memory formation region and then forming an n? type semiconductor region of the nonvolatile memory cell in a semiconductor substrate by ion implantation using the above-mentioned additional mask without changing it to another one.
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: June 20, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Fukuo Owada
  • Patent number: 9508554
    Abstract: To provide a semiconductor device having improved performance while improving the throughput in the manufacturing steps of the semiconductor device. An insulating film portion comprised of first, second, third, fourth, and fifth insulating films is formed on a semiconductor substrate. The second insulating film is a first charge storage film and the fourth insulating film is a second charge storage film. The first charge storage film contains silicon and nitrogen; the third insulating film contains silicon and oxygen; and the second charge storage film contains silicon and nitrogen. The thickness of the third insulating film is smaller than that of the first charge storage film and the thickness of the second charge storage film is greater than that of the first charge storage film. The third insulating film is formed by treating the upper surface of the first charge storage film with a water-containing treatment liquid.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: November 29, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuharu Yamabe, Shinichiro Abe, Shoji Yoshida, Hideaki Yamakoshi, Toshio Kudo, Seiji Muranaka, Fukuo Owada, Daisuke Okada
  • Publication number: 20160315093
    Abstract: To provide a semiconductor device having mix-loaded therein a nonvolatile memory cell and a field effect transistor at a reduced cost. A method of manufacturing a semiconductor device includes pattering a conductor film by using an additional mask that covers a gate electrode formation region of a memory formation region and exposes a main circuit formation region (field effect transistor formation region) and thereby forming a gate electrode of a nonvolatile memory cell in the memory formation region and then forming an n?type semiconductor region of the nonvolatile memory cell in a semiconductor substrate by ion implantation using the above-mentioned additional mask without changing it to another one.
    Type: Application
    Filed: July 4, 2016
    Publication date: October 27, 2016
    Inventor: Fukuo Owada
  • Patent number: 9406813
    Abstract: To provide a semiconductor device with nonvolatile memory, having improved performance. A memory cell has control and memory gate electrodes on a semiconductor substrate via an insulating film and another insulating film having first, second, and third films stacked one after another in order of mention, respectively. The memory and control gate electrodes are adjacent to each other via the stacked insulating film. The second insulating film has a charge accumulation function. The first and third insulating films each have a band gap greater than that of the second insulating film. An inner angle of the second insulating film between a portion extending between the semiconductor substrate and the memory gate electrode and a portion extending between the control gate electrode and the memory gate electrode is ?90°. An inner angle of the corner portion between the lower surface and the side surface of the memory gate electrode is <90°.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: August 2, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Fukuo Owada