Patents by Inventor Fumiaki Sasaki

Fumiaki Sasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11047023
    Abstract: A copper alloy sheet material that is excellent in surface smoothness of an etched surface has a composition containing, (mass %), from 1.0 to 4.5% of Ni, from 0.1 to 1.2% of Si, from 0 to 0.3% of Mg, from 0 to 0.2% of Cr, from 0 to 2.0% of Co, from 0 to 0.1% of P, from 0 to 0.05% of B, from 0 to 0.2% of Mn, from 0 to 0.5% of Sn, from 0 to 0.5% of Ti, from 0 to 0.2% of Zr, from 0 to 0.2% of Al, from 0 to 0.3% of Fe, from 0 to 1.0% of Zn, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles has a major diameter of 1.0 ?m or more of 4.0×103 per square millimeter or less. KAM value measured with a step size of 0.5 ?m is more than 3.00.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: June 29, 2021
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Toshiya Shutoh, Hisashi Suda, Fumiaki Sasaki
  • Publication number: 20190106769
    Abstract: A copper alloy sheet material that is excellent in surface smoothness of an etched surface has a composition containing, (mass %), from 1.0 to 4.5% of Ni, from 0.1 to 1.2% of Si, from 0 to 0.3% of Mg, from 0 to 0.2% of Cr, from 0 to 2.0% of Co, from 0 to 0.1% of P, from 0 to 0.05% of B, from 0 to 0.2% of Mn, from 0 to 0.5% of Sn, from 0 to 0.5% of Ti, from 0 to 0.2% of Zr, from 0 to 0.2% of Al, from 0 to 0.3% of Fe, from 0 to 1.0% of Zn, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles has a major diameter of 1.0 ?m or more of 4.0×103 per square millimeter or less. KAM value measured with a step size of 0.5 ?m is more than 3.00.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 11, 2019
    Inventors: Toshiya SHUTOH, Hisashi SUDA, Fumiaki SASAKI
  • Patent number: 10199132
    Abstract: A copper alloy sheet material comprises (by mass %) from 2.50 to 4.00% in total of Ni and Co, from 0.50 to 2.00% of Co, from 0.70 to 1.50% of Si, from 0 to 0.50% of Fe, from 0 to 0.10% of Mg, from 0 to 0.50% of Sn, from 0 to 0.15% of Zn, from 0 to 0.07% of B, from 0 to 0.10% of P, from 0 to 0.10% of REM, from 0 to 0.01% in total of Cr, Zr, Hf, Nb and S, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles (particle diameter of 5 mm or more) is 10 per mm2 or less. A number density of fine secondary phase particles (particle diameter of from 5 to 10 nm) is 1.0·109 per mm2 or more. A Si concentration in the parent phase is 0.10% by mass or more.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: February 5, 2019
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Takashi Kimura, Toshiya Kamada, Weilin Gao, Fumiaki Sasaki, Akira Sugawara
  • Patent number: 9412482
    Abstract: A Cu—Ni—Co—Si based copper alloy sheet material has second phase particles existing in a matrix, with a number density of ultrafine second phase particles is 1.0×109 number/mm2 or more. A number density of fine second phase particles is not more than 5.0×107 number/mm2. A number density of coarse second phase particles is 1.0×105 number/mm2 or more and not more than 1.0×106 number/mm2. The material has crystal orientation satisfying the following equation (1): I{200}/I0{200}?3.0??(1) wherein I{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane on the sheet material sheet surface; and I0{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane in a pure copper standard powder sample.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: August 9, 2016
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Toshiya Kamada, Takashi Kimura, Weilin Gao, Fumiaki Sasaki, Akira Sugawara
  • Patent number: 9396827
    Abstract: A Cu—Ti based copper alloy sheet material contains, in mass %, from 2.0 to 5.0% of Ti, from 0 to 1.5% Ni, from 0 to 1.0% Co, from 0 to 0.5% Fe, from 0 to 1.2% Sn, from 0 to 2.0% Zn, from 0 to 1.0% Mg, from 0 to 1.0% Zr, from 0 to 1.0% Al, from 0 to 1.0% Si, from 0 to 0.1% P, from 0 to 0.05% B, from 0 to 1.0% Cr, from 0 to 1.0% Mn, and from 0 to 1.0% V, the balance substantially being Cu. The sheet material has a metallic texture wherein in a cross section perpendicular to a sheet thickness direction, a maximum width of a grain boundary reaction type precipitate is not more than 500 nm, and a density of a granular precipitate having a diameter of 100 nm or more is not more than 105 number/mm2.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 19, 2016
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Motohiko Suzuki, Toshiya Kamada, Takashi Kimura, Fumiaki Sasaki, Akira Sugawara
  • Publication number: 20150357074
    Abstract: A copper alloy sheet material comprises (by mass %) from 2.50 to 4.00% in total of Ni and Co, from 0.50 to 2.00% of Co, from 0.70 to 1.50% of Si, from 0 to 0.50% of Fe, from 0 to 0.10% of Mg, from 0 to 0.50% of Sn, from 0 to 0.15% of Zn, from 0 to 0.07% of B, from 0 to 0.10% of P, from 0 to 0.10% of REM, from 0 to 0.01% in total of Cr, Zr, Hf, Nb and S, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles (particle diameter of 5 mm or more) is 10 per mm2 or less. A number density of fine secondary phase particles (particle diameter of from 5 to 10 nm) is 1.0·109 per mm2 or more. A Si concentration in the parent phase is 0.10% by mass or more.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 10, 2015
    Inventors: Takashi KIMURA, Toshiya KAMADA, Weilin GAO, Fumiaki SASAKI, Akira SUGAWARA
  • Publication number: 20140283963
    Abstract: A Cu—Ti based copper alloy sheet material contains, in mass %, from 2.0 to 5.0% of Ti, from 0 to 1.5% Ni, from 0 to 1.0% Co, from 0 to 0.5% Fe, from 0 to 1.2% Sn, from 0 to 2.0% Zn, from 0 to 1.0% Mg, from 0 to 1.0% Zr, from 0 to 1.0% Al, from 0 to 1.0% Si, from 0 to 0.1% P, from 0 to 0.05% B, from 0 to 1.0% Cr, from 0 to 1.0% Mn, and from 0 to 1.0% V, the balance substantially being Cu. The sheet material has a metallic texture wherein in a cross section perpendicular to a sheet thickness direction, a maximum width of a grain boundary reaction type precipitate is not more than 500 nm, and a density of a granular precipitate having a diameter of 100 nm or more is not more than 105 number/mm2.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: DOWA METAL TECH CO., LTD.
    Inventors: Weilin GAO, Motohiko Suzuki, Toshiya Kamada, Takashi Kimura, Fumiaki Sasaki, Akira Sugawara
  • Publication number: 20140116583
    Abstract: A Cu—Ni—Co—Si based copper alloy sheet material has second phase particles existing in a matrix, with a number density of ultrafine second phase particles is 1.0×109 number/mm2 or more. A number density of fine second phase particles is not more than 5.0×107 number/mm2. A number density of coarse second phase particles is 1.0×105 number/mm2 or more and not more than 1.0×106 number/mm2. The material has crystal orientation satisfying the following equation (1): I{200}/I0{200}?3.0??(1) wherein I{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane on the sheet material sheet surface; and I0{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane in a pure copper standard powder sample.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Toshiya KAMADA, Takashi KIMURA, Weilin GAO, Fumiaki SASAKI, Akira SUGAWARA
  • Publication number: 20040042928
    Abstract: A high strength copper alloy is made of a prescribed material composed of Cu and inevitable impurities as well as titanium (Ti) at 0.1 to 4 weight percent, wherein it is possible to further include at least one of Ag, Ni, Fe, Si, Sn, Mg, Zn, Cr, and P at a prescribed weight percent ranging from 0.01 to 2 in total. In a manufacturing method, the material is subjected to cold rolling, precipitation treatment, and additional cold rolling sequentially, wherein the reduction rate of the additional cold rolling is set to 3% or more, and the total reduction rate of the cold rolling and the additional cold rolling ranges from 15% to 50%, so that a ratio of yield strength versus tensile strength is set to 0.9 or more. In addition, it is possible to perform stress relaxation annealing after the additional cold rolling upon heating of the material for a prescribed time.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 4, 2004
    Inventors: Fumiaki Sasaki, Yozo Tsugane