Patents by Inventor Fumiharu Teramae

Fumiharu Teramae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9590150
    Abstract: In order to provide a light-emitting device having improved color rendering properties, a light-emitting device which uses a SiC fluorescent material comprises a first SiC fluorescent portion in which a donor impurity and an acceptor impurity are added and which is formed of a SiC crystal; a second SiC fluorescent portion which is formed of a SiC crystal in which the same donor impurity as the first SiC fluorescent portion and the same acceptor impurity as the first SiC fluorescent portion are added, and in which a concentration of the acceptor impurity is higher than the concentration of the acceptor impurity in the first SiC fluorescent portion and an emission wavelength is longer than that of the first SiC fluorescent portion; and a light-emitting portion that emits excitation light that excites the first SiC fluorescent portion and the second SiC fluorescent portion.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: March 7, 2017
    Assignee: EL-SEED CORPORATION
    Inventors: Johan Ekman, Atsushi Suzuki, Fumiharu Teramae, Tomohiko Maeda, Koichi Naniwae
  • Publication number: 20160141464
    Abstract: In order to provide a light-emitting device having improved color rendering properties, a light-emitting device which uses a SiC fluorescent material comprises a first SiC fluorescent portion in which a donor impurity and an acceptor impurity are added and which is formed of a SiC crystal; a second SiC fluorescent portion which is formed of a SiC crystal in which the same donor impurity as the first SiC fluorescent portion and the same acceptor impurity as the first SiC fluorescent portion are added, and in which a concentration of the acceptor impurity is higher than the concentration of the acceptor impurity in the first SiC fluorescent portion and an emission wavelength is longer than that of the first SiC fluorescent portion; and a light-emitting portion that emits excitation light that excites the first SiC fluorescent portion and the second SiC fluorescent portion.
    Type: Application
    Filed: June 19, 2014
    Publication date: May 19, 2016
    Inventors: Johan EKMAN, Atsushi SUZUKI, Fumiharu TERAMAE, Tomohiko MAEDA, Koichi NANIWAE
  • Publication number: 20160060514
    Abstract: A method for manufacturing a SiC fluorescent material, which includes growing the SiC fluorescent material in a hydrogen-containing atmosphere by a sublimation method in the manufacture of the SiC fluorescent material, the SiC fluorescent material including a SiC crystal in which a carbon atom is disposed in a cubic site and a hexagonal site, and a donor impurity and an acceptor impurity added therein, wherein a ratio of a donor impurity to be substituted with a carbon atom in a cubic site to a donor impurity to be substituted with a carbon atom in a hexagonal site is larger than a ratio of the cubic site to the hexagonal site in a crystal structure.
    Type: Application
    Filed: August 22, 2015
    Publication date: March 3, 2016
    Inventors: Tomohiko MAEDA, Fumiharu TERAMAE, Koichi NANIWAE
  • Patent number: 9142619
    Abstract: [Problem] To provide a group III nitride semiconductor device and a method for manufacturing the same in which dislocation density in a semiconductor layer can be precisely reduced. [Solution] In manufacturing a group III nitride semiconductor device 1, a mask layer 40 is formed on a substrate 20, followed by selectively growing nanocolumns 50 made of a group III nitride semiconductor through a pattern 44 of the mask layer 40 in order to grow a group III nitride semiconductor layer 10 on the mask layer 40.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: September 22, 2015
    Assignee: EL-SEED CORPORATION
    Inventors: Tsukasa Kitano, Koichi Naniwae, Masayoshi Koike, Fumiharu Teramae, Toshiyuki Kondo, Atsushi Suzuki, Tomohiko Maeda, Midori Mori
  • Patent number: 9117967
    Abstract: [Problem] A problem is to provide a method of manufacturing a glass substrate with a concave-convex film using dry etching capable of giving a fine concave-convex structure precisely by dry etching, a glass substrate with a concave-convex structure, a solar cell, and a method of manufacturing a solar cell. [Means to Solve the Problem] In order to give a concave-convex structure to a glass substrate made of a plurality of oxides placed in different vapor pressures during dry etching, a subject film forming step and a concave-convex structure forming step are provided. The subject film forming step forms a subject film made of a single material on a flat surface of the glass substrate. The concave-convex structure forming step forms a periodic concave-convex structure in a surface of the subject film by dry etching. As a result, a fine concave-convex structure is formed precisely by dry etching.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: August 25, 2015
    Assignee: EL-SEED CORPORATION
    Inventors: Fumiharu Teramae, Koichi Naniwae, Tsukasa Kitano, Toshiyuki Kondo, Atsushi Suzuki, Midori Mori
  • Patent number: 9099597
    Abstract: A light emitting diode is provided which can obtain emission at the shorter wavelength side of the emission range of normal 6H-type SiC doped with B and N. A porous layer 124 consisting of single crystal 6H-type SiC of porous state is formed on a SiC substrate 102 of a light emitting diode element 100. Visible light is created from blue color to green color when the porous layer 124 is excited by ultra violet light emitted from the nitride semiconductor layer.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: August 4, 2015
    Assignee: MEIJO UNIVERSITY
    Inventors: Satoshi Kamiyama, Motoaki Iwaya, Hiroshi Amano, Isamu Akasaki, Takuya Nishimura, Fumiharu Teramae, Toshiyuki Kondo
  • Publication number: 20150152326
    Abstract: Provided are a SiC fluorescent material with improved luminous efficiency, a method for manufacturing the same and a light emitting element. A SiC fluorescent material comprises a SiC crystal in which a carbon atom is disposed in a cubic site and a hexagonal site, and a donor impurity and an acceptor impurity added therein, wherein a ratio of a donor impurity to be substituted with a carbon atom in a cubic site to a donor impurity to be substituted with a carbon atom in a hexagonal site is larger than a ratio of the cubic site to the hexagonal site in a crystal structure.
    Type: Application
    Filed: May 29, 2013
    Publication date: June 4, 2015
    Inventors: Tomohiko Maeda, Fumiharu Teramae, Koichi Naniwae
  • Publication number: 20150091039
    Abstract: A semiconductor light emitting element includes a semiconductor stack part that includes a light emitting layer, a diffractive face to which light emitted from the light emitting layer is incident, and convex portions or concave portions formed in a period which is longer than an optical wavelength of the light and is shorter than a coherent length of the light. The diffractive face reflects incident light in multimode according to Bragg's condition of diffraction and transmits the incident light in multimode according to the Bragg's condition of diffraction. The semiconductor stack part is formed on the diffractive face. The convex portions or the concave portions include a side surface and a curved portion which curves and extends to a center side of the convex portions or the concave portions from an upper end of the side surface.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Satoshi Kamiyama, Motoaki Iwaya, Hiroshi Amano, Isamu Akasaki, Toshiyuki Kondo, Fumiharu Teramae, Tsukasa Kitano, Atsushi Suzuki
  • Patent number: 8941136
    Abstract: A semiconductor light emitting element includes a semiconductor stack part that includes a light emitting layer, a diffractive face that light emitted from the light emitting layer is incident to, convex portions or concave portions formed in a period which is longer than an optical wavelength of the light and is shorter than a coherent length of the light, wherein the diffractive face reflects incident light in multimode according to Bragg's condition of diffraction and transmits the incident light in multimode according to the Bragg's condition of diffraction, and a reflective face which reflects multimode light diffracted at the diffractive face and let the multimode light be incident to the diffractive face again. The semiconductor stack part is formed on the diffractive face.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: January 27, 2015
    Assignee: El-Seed Corporation
    Inventors: Satoshi Kamiyama, Motoaki Iwaya, Hiroshi Amano, Isamu Akasaki, Toshiyuki Kondo, Fumiharu Teramae, Tsukasa Kitano, Atsushi Suzuki
  • Publication number: 20140170799
    Abstract: [Problem] A problem is to provide a method of manufacturing a glass substrate with a concave-convex film using dry etching capable of giving a fine concave-convex structure precisely by dry etching, a glass substrate with a concave-convex structure, a solar cell, and a method of manufacturing a solar cell. [Means to Solve the Problem] In order to give a concave-convex structure to a glass substrate made of a plurality of oxides placed in different vapor pressures during dry etching, a subject film forming step and a concave-convex structure forming step are provided. The subject film forming step forms a subject film made of a single material on a flat surface of the glass substrate. The concave-convex structure forming step forms a periodic concave-convex structure in a surface of the subject film by dry etching. As a result, a fine concave-convex structure is formed precisely by dry etching.
    Type: Application
    Filed: August 29, 2012
    Publication date: June 19, 2014
    Inventors: Fumiharu Teramae, Koichi Maniwae, Tsukasa Kitano, Toshiyuki Kondo, Atsushi Suzuki, Midori Mori
  • Publication number: 20130126907
    Abstract: [Problem] To provide a group III nitride semiconductor device and a method for manufacturing the same in which dislocation density in a semiconductor layer can be precisely reduced. [Solution] In manufacturing a group III nitride semiconductor device 1, a mask layer 40 is formed on a substrate 20, followed by selectively growing nanocolumns 50 made of a group III nitride semiconductor through a pattern 44 of the mask layer 40 in order to grow a group III nitride semiconductor layer 10 on the mask layer 40.
    Type: Application
    Filed: November 25, 2011
    Publication date: May 23, 2013
    Applicant: EL-SEED Corporation
    Inventors: Tsukasa Kitano, Koichi Naniwae, Masayoshi Koike, Fumiharu Teramae, Toshiyuki Kondo, Atsushi Suzuki, Tomohiko Maeda, Midori Mori
  • Publication number: 20120228656
    Abstract: [PROBLEM] A light extraction efficiency increases by suppressing a reflection of a semiconductor layer and a transparent substrate. [MEANS FOR SOLVING] A semiconductor light emitting element comprising a semiconductor stack part including a light emitting layer is formed on a main surface of a substrate, a diffractive face that light emitted from the light emitting layer is incident to, that convex portions or concave portions are formed in a period which is longer than optical wavelength of the light and is shorter than coherent length of the light, is formed on a main surface side of the substrate, and a reflective face which reflects light diffracted at the diffractive face and let this light be incident to the diffractive face again is formed on a back surface side of the substrate.
    Type: Application
    Filed: August 23, 2010
    Publication date: September 13, 2012
    Applicant: EL-SEED Corporation
    Inventors: Satoshi Kamiyama, Motoaki Iwaya, Hiroshi Amano, Isamu Akasaki, Toshiyuki Kondo, Fumiharu Teramae, Tsukasa Kitano, Atsushi Suzuki
  • Publication number: 20120037923
    Abstract: [PROBLEM] To provide a light emitting diode which can obtain emission at shorter wavelength side of emission range of normal 6H-type SiC doped with B and N, and a method for manufacturing the same. [MEANS FOR SOLVING] Porous layer 124 consisting of single crystal 6H-type SiC of porous state is formed on a SiC substrate 102 of a light emitting diode element 100 such that visible light which is from blue color to green color when the porous layer 124 is excited by ultra violet light emitted from nitride semiconductor layer.
    Type: Application
    Filed: March 26, 2010
    Publication date: February 16, 2012
    Applicant: MEIJO UNIVERSITY
    Inventors: Satoshi Kamiyama, Motoaki Iwaya, Hiroshi Amano, Isamu Akasaki, Takuya Nishimura, Fumiharu Teramae, Toshiyuki Kondo