Patents by Inventor Fumihiro Yamanaka

Fumihiro Yamanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9327715
    Abstract: An electric vehicle control device is provided that ensures a required coupling capacity precision of a friction coupling element by appropriately switching a torque sharing rate during a shift transition period. The control device includes a motor, an automatic transmission, a shift controller, a frictional engagement element, a control unit and an engagement capacity control section. The frictional engagement element is disposed in a power transmission path from the motor to a driving wheel. The control unit switching delays switching a torque sharing rate of the frictional engagement element during a shift transition period until the start of the shifting procedure, and continuously switches the current gear sharing rate to a subsequent gear sharing rate in accordance with a degree of the shifting procedure when the shifting procedure starts.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 3, 2016
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kaori Tanishima, Fumihiro Yamanaka
  • Publication number: 20150353071
    Abstract: An electric vehicle control device is provided that ensures a required coupling capacity precision of a friction coupling element by appropriately switching a torque sharing rate during a shift transition period. The control device includes a motor, an automatic transmission, a shift controller, a frictional engagement element, a control unit and an engagement capacity control section. The frictional engagement element is disposed in a power transmission path from the motor to a driving wheel. The control unit switching delays switching a torque sharing rate of the frictional engagement element during a shift transition period until the start of the shifting procedure, and continuously switches the current gear sharing rate to a subsequent gear sharing rate in accordance with a degree of the shifting procedure when the shifting procedure starts.
    Type: Application
    Filed: January 17, 2014
    Publication date: December 10, 2015
    Applicant: Nissan Motor Co.,
    Inventors: Kaori TANISHIMA, Fumihiro YAMANAKA
  • Patent number: 9205833
    Abstract: A hybrid vehicle control device includes an engine start control section that begins an engine start control when a mode transition request to change to a hybrid vehicle mode occurs due to an accelerator operation while traveling in an electric vehicle mode in which a first clutch is opened. The engine start control section begins engagement of the first clutch after slip engagement of a second clutch is determined and starting the engine using a motor as a starter motor. A negative slip detecting/predicting section detects/predicts if a slip polarity of the second clutch has transitioned from positive slip to negative slip after the engine start control has begun and before the engine has started. A forced backup start control section starts the engine with the second clutch in a fully engaged state when a transition of the second clutch to negative slip has been detected or predicted.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 8, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroaki Kawamura, Kaori Tanishima, Fumihiro Yamanaka, Yutaka Takamura, Munetoshi Ueno, Noboru Kudo
  • Patent number: 8868276
    Abstract: A hybrid vehicle control device is provided with an engine, a motor and a mode switch section, an automatic transmission and a controller. The controller outputs the gear shift command prior to an engine start command when a simultaneous output prediction condition is met that predicts the output of a gear shift request and a start request at the same time. In this way, the generation of a large shock by the entering of the engine start in the start prohibiting region during the gear shift is prevented.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 21, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kaori Tanishima, Hiroaki Kawamura, Fumihiro Yamanaka
  • Publication number: 20140303822
    Abstract: A hybrid vehicle control device includes an engine start control section that begins an engine start control when a mode transition request to change to a hybrid vehicle mode occurs due to an accelerator operation while traveling in an electric vehicle mode in which a first clutch is opened. The engine start control section begins engagement of the first clutch after slip engagement of a second clutch is determined and starting the engine using a motor as a starter motor. A negative slip detecting/predicting section detects/predicts if a slip polarity of the second clutch has transitioned from positive slip to negative slip after the engine start control has begun and before the engine has started. A forced backup start control section starts the engine with the second clutch in a fully engaged state when a transition of the second clutch to negative slip has been detected or predicted.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 9, 2014
    Inventors: Hiroaki Kawamura, Kaori Tanishima, Fumihiro Yamanaka, Yutaka Takamura, Munetoshi Ueno, Noboru Kudo
  • Patent number: 8812208
    Abstract: A control apparatus of a hybrid vehicle provided with an engine, a motor, an automatic transmission performing a shift by engaging/disengaging a plurality of engagement elements, a first clutch arranged between the engine and the motor for transmitting/cutting a driving force between the engine and the motor and a second clutch arranged between the motor and driving wheels for transmitting/cutting a driving force from the motor to the driving wheels, has a slip control section that controls the second clutch to a slip state during the shift of the automatic transmission. In a case of a successive shift in which a current shift and a succeeding shift are successively performed, the slip control section gradually increases an engagement pressure of the second clutch when changing the slip state of the second clutch to a fully engaged state after the current shift is completed and before the succeeding shift is completed.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: August 19, 2014
    Assignee: Jatco Ltd
    Inventors: Masami Suzuki, Fumihiro Yamanaka
  • Patent number: 8798838
    Abstract: A control device of a hybrid vehicle includes an engine, a motor/generator, a first clutch, an automatic transmission, a second clutch, and startup/shifting simultaneous processing section. When engine speed increase control for increasing the engine speed by the motor/generator in order to start up the engine during travel and downshifting control of the automatic transmission are processed in parallel, the startup/shifting simultaneous processing section uses the motor torque of the motor/generator to increase the increase of input speed by the downshifting control to a target input speed while engine speed increase control is being performed by the motor/generator.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: August 5, 2014
    Assignees: Nissan Motor Co., Ltd., JATCO Ltd.
    Inventors: Fumihiro Yamanaka, Masami Suzuki
  • Patent number: 8798839
    Abstract: A hybrid vehicle control device is provided with an engine, a motor/generator, a first clutch, an automatic transmission, a second clutch, and a controller having a simultaneous process selection control section. The simultaneous process selection control section performs engine startup control and downshift control in parallel in cases where the torque outputtable by the motor subsequent to downshifting during overlap of an engine startup request and a downshift request is equal to or greater than the engine startup torque, or performs engine startup control first then downshift control in cases where the torque outputtable by the motor subsequent to downshifting is less than the engine startup torque.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: August 5, 2014
    Assignees: Nissan Motor Co., Ltd., JATCO Ltd.
    Inventors: Fumihiro Yamanaka, Masami Suzuki
  • Publication number: 20130297136
    Abstract: A hybrid vehicle control device is provided with an engine, a motor/generator, a first clutch, an automatic transmission, a second clutch, and a controller having a simultaneous process selection control section. The simultaneous process selection control section performs engine startup control and downshift control in parallel in cases where the torque outputtable by the motor subsequent to downshifting during overlap of an engine startup request and a downshift request is equal to or greater than the engine startup torque, or performs engine startup control first then downshift control in cases where the torque outputtable by the motor subsequent to downshifting is less than the engine startup torque.
    Type: Application
    Filed: January 27, 2012
    Publication date: November 7, 2013
    Applicants: JATCO LTD, NISSAN MOTOR CO., LTD.
    Inventors: Fumihiro Yamanaka, Masami Suzuki
  • Publication number: 20130297135
    Abstract: A control device of a hybrid vehicle includes an engine, a motor/generator, a first clutch, an automatic transmission, a second clutch, and startup/shifting simultaneous processing section. When engine speed increase control for increasing the engine speed by the motor/generator in order to start up the engine during travel and downshifting control of the automatic transmission are processed in parallel, the startup/shifting simultaneous processing section uses the motor torque of the motor/generator to increase the increase of input speed by the downshifting control to a target input speed while engine speed increase control is being performed by the motor/generator.
    Type: Application
    Filed: January 27, 2012
    Publication date: November 7, 2013
    Applicants: JATCO LTD, NISSAN MOTOR CO., LTD.
    Inventors: Fumihiro Yamanaka, Masami Suzuki
  • Publication number: 20130231815
    Abstract: A hybrid vehicle control device is provided with an engine, a motor and a mode switch section, an automatic transmission and a controller. The controller outputs the gear shift command prior to an engine start command when a simultaneous output prediction condition is met that predicts the output of a gear shift request and a start request at the same time. In this way, the generation of a large shock by the entering of the engine start in the start prohibiting region during the gear shift is prevented.
    Type: Application
    Filed: October 21, 2011
    Publication date: September 5, 2013
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Kaori Tanishima, Hiroaki Kawamura, Fumihiro Yamanaka
  • Patent number: 8439802
    Abstract: A speed change control device of an automatic transmission comprises a first control section that, upon detecting a speed change instruction for a speed change from a first given speed to a second given speed, carries out the speed change by reducing an engaging pressure of a releasing side frictional element that has established the first given speed and increasing an engaging pressure of an engaging side frictional element that would establish the second given speed; a second control section that carries out a correction processing to increase the engaging pressure of the releasing side frictional element when a throttle open degree is increased during the speed change carried out by the first control section; and a third control section that inhibits the correction processing of the second control section when the engaging pressure of the releasing side frictional element is lower than a given value.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: May 14, 2013
    Assignee: Jatco Ltd
    Inventors: Masami Suzuki, Fumihiro Yamanaka
  • Publication number: 20120202646
    Abstract: A control apparatus of a hybrid vehicle provided with an engine, a motor, an automatic transmission performing a shift by engaging/disengaging a plurality of engagement elements, a first clutch arranged between the engine and the motor for transmitting/cutting a driving force between the engine and the motor and a second clutch arranged between the motor and driving wheels for transmitting/cutting a driving force from the motor to the driving wheels, has a slip control section that controls the second clutch to a slip state during the shift of the automatic transmission. In a case of a successive shift in which a current shift and a succeeding shift are successively performed, the slip control section gradually increases an engagement pressure of the second clutch when changing the slip state of the second clutch to a fully engaged state after the current shift is completed and before the succeeding shift is completed.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 9, 2012
    Inventors: Masami Suzuki, Fumihiro Yamanaka
  • Publication number: 20120202647
    Abstract: A speed change control device of an automatic transmission comprises a first control section that, upon detecting a speed change instruction for a speed change from a first given speed to a second given speed, carries out the speed change by reducing an engaging pressure of a releasing side frictional element that has established the first given speed and increasing an engaging pressure of an engaging side frictional element that would establish the second given speed; a second control section that carries out a correction processing to increase the engaging pressure of the releasing side frictional element when a throttle open degree is increased during the speed change carried out by the first control section; and a third control section that inhibits the correction processing of the second control section when the engaging pressure of the releasing side frictional element is lower than a given value.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 9, 2012
    Inventors: Masami SUZUKI, Fumihiro YAMANAKA