Patents by Inventor Fumio Kawahara
Fumio Kawahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10828694Abstract: A casting device in which refrigerant is pressure-fed to a cooling passage formed in a die, leakage of refrigerant in the die can be reliably detected in a short time without a significant modification applied to the conventional device. A casting device includes a pressure-feed device that pressure-feeds refrigerant to a cooling passage formed in a die, and a release agent coating applicator that applies a release agent to the die, and further includes a unit that mixes a fluorescent agent into the refrigerant (fluorescent agent tank), a unit that irradiates the die surface of the die with black light while the refrigerant containing the fluorescent agent mixed therein is pressure-fed to the die, and an imaging device that captures an image of the die surface. The imaging device is integrally assembled with the release agent coating applicator.Type: GrantFiled: November 18, 2016Date of Patent: November 10, 2020Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC INTERNATIONAL CO., LTD., MEIWA E-TEC CO., LTD., NIKON CORPORATIONInventors: Daisuke Serino, Fumio Kawahara, Yuzo Matsuda, Tetsushi Yamaguchi, Hiroshi Kawahara, Sakayuki Ishikawa, Takuto Takahashi, Naoshi Sakaguchi, Hiroyuki Kayaba, Takahiro Michimoto
-
Patent number: 10711220Abstract: An oil-based release agent of the present invention contains a petroleum-based hydrocarbon solvent (a) and a high temperature adhesive (b), is applied to a metal die used for die casting or casting, has high adhesion and high lubricity even with respect to a metal die at a high temperature particularly of 300° C. or higher, and can prevent seizure. In addition, the present invention provides a method for applying the oil-based release agent of the present invention by controlling an adhesion amount thereof by micronization and speed-control thereof with respect to a metal die at a high temperature, and an electrostatic application method.Type: GrantFiled: January 30, 2015Date of Patent: July 14, 2020Assignees: AOKI SCIENCE INSTITUTE CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC INTERNATIONAL CO., LTD.Inventors: Hiroaki Komatsubara, Masanao Kobayashi, Toshiaki Shimizu, Ikuo Yamauchi, Takashi Morikawa, Eiji Tabata, Fumio Kawahara, Yuzo Matsuda
-
Patent number: 10596618Abstract: Provided is a method for producing a heat sink that can easily and effectively form a heat radiating film on the surface of a substrate without requiring enormous heat energy for increasing the temperature of the substrate. The method is a method for producing a heat sink having a substrate and a heat radiating film formed on the surface of the substrate, including a first step of casting a substrate by injecting molten metal into a cavity of molding dies; and a second step of applying a heat radiating coating to the substrate through spraying or dropping in the period from when the molding dies are opened after the casting until when the temperature of the substrate that has been cast becomes lower than the deposition temperature that is a temperature necessary to deposit the heat radiating coating on the substrate.Type: GrantFiled: August 23, 2017Date of Patent: March 24, 2020Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC International Co., Ltd.Inventors: Naoaki Sugiura, Yuichi Furukawa, Mitsuhiro Kobayashi, Fumio Kawahara, Katsuhiro Takami
-
Publication number: 20190176221Abstract: A casting device in which refrigerant is pressure-fed to a cooling passage formed in a die, leakage of refrigerant in the die can be reliably detected in a short time without a significant modification applied to the conventional device. A casting device includes a pressure-feed device that pressure-feeds refrigerant to a cooling passage formed in a die, and a release agent coating applicator that applies a release agent to the die, and further includes a unit that mixes a fluorescent agent into the refrigerant (fluorescent agent tank), a unit that irradiates the die surface of the die with black light while the refrigerant containing the fluorescent agent mixed therein is pressure-fed to the die, and an imaging device that captures an image of the die surface. The imaging device is integrally assembled with the release agent coating applicator.Type: ApplicationFiled: November 18, 2016Publication date: June 13, 2019Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC International Co., Ltd., MEIWA e-TEC CO., LTD., NIKON CORPORATIONInventors: Daisuke SERINO, Fumio KAWAHARA, Yuzo MATSUDA, Tetsushi YAMAGUCHI, Hiroshi KAWAHARA, Sakayuki ISHIKAWA, Takuto TAKAHASHI, Naoshi SAKAGUCHI, Hiroyuki KAYABA, Takahiro MICHIMOTO
-
Publication number: 20180056363Abstract: Provided is a method for producing a heat sink that can easily and effectively form a heat radiating film on the surface of a substrate without requiring enormous heat energy for increasing the temperature of the substrate. The method is a method for producing a heat sink having a substrate and a heat radiating film formed on the surface of the substrate, including a first step of casting a substrate by injecting molten metal into a cavity of molding dies; and a second step of applying a heat radiating coating to the substrate through spraying or dropping in the period from when the molding dies are opened after the casting until when the temperature of the substrate that has been cast becomes lower than the deposition temperature that is a temperature necessary to deposit the heat radiating coating on the substrate.Type: ApplicationFiled: August 23, 2017Publication date: March 1, 2018Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC International Co., Ltd.Inventors: Naoaki SUGIURA, Yuichi FURUKAWA, Mitsuhiro KOBAYASHI, Fumio KAWAHARA, Katsuhiro TAKAMI
-
Patent number: 9644255Abstract: A surface treatment method for a metal material is provided which includes applying diluted sulfuric acid to a surface of the metal material that is composed primarily of iron, performing a heat treatment on the metal material in the presence of at least one of CO, CO2 and organic gas under nitriding conditions under which a nitrided layer is formed in a superficial layer of the metal material after the application of the diluted sulfuric acid to form a carbon film which includes at least one of carbon nanocoils, carbon nanotubes and carbon nanofilaments on a surface of the nitrided layer of the metal material.Type: GrantFiled: April 12, 2012Date of Patent: May 9, 2017Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA SCHOOL FOUNDATION, MEC INTERNATIONAL CO. LTD.Inventors: Yuichi Furukawa, Masahiro Okumiya, Yoshiki Tsunekawa, Nao Kumemoto, Fumio Kawahara, Katsuhiro Takami
-
Publication number: 20170015934Abstract: An oil-based release agent of the present invention contains a petroleum-based hydrocarbon solvent (a) and a high temperature adhesive (b), is applied to a metal die used for die casting or casting, has high adhesion and high lubricity even with respect to a metal die at a high temperature particularly of 300° C. or higher, and can prevent seizure. In addition, the present invention provides a method for applying the oil-based release agent of the present invention by controlling an adhesion amount thereof by micronization and speed-control thereof with respect to a metal die at a high temperature, and an electrostatic application method.Type: ApplicationFiled: January 30, 2015Publication date: January 19, 2017Applicants: AOKI SCIENCE INSTITUTE CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC INTERNATIONAL CO., LTD.Inventors: Hiroaki KOMATSUBARA, Masanao KOBAYASHI, Toshiaki SHIMIZU, Ikuo YAMAUCHI, Takashi MORIKAWA, Eiji TABATA, Fumio KAWAHARA, Yuzo MATSUDA
-
Patent number: 9163992Abstract: A technique for an infrared radiation thermometer used for thermography that detects measurement abnormality of an infrared radiation thermometer and estimates the causes of the measurement abnormality such as contamination of an objective lens and a malfunction in a mechanism section of the infrared radiation thermometer.Type: GrantFiled: August 6, 2012Date of Patent: October 20, 2015Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEIWA E-TEC CO., LTD.Inventors: Yuichi Furukawa, Shingo Nakamura, Yuji Okada, Fumio Kawahara
-
Publication number: 20140048182Abstract: A surface treatment method for a metal material is provided which includes applying diluted sulfuric acid to a surface of the metal material that is composed primarily of iron, performing a heat treatment on the metal material in the presence of at least one of CO, CO2 and organic gas under nitriding conditions under which a nitrided layer is formed in a superficial layer of the metal material after the application of the diluted sulfuric acid to form a carbon film which includes at least one of carbon nanocoils, carbon nanotubes and carbon nanofilaments on a surface of the nitrided layer of the metal material.Type: ApplicationFiled: April 12, 2012Publication date: February 20, 2014Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC INTERNATIONAL CO. LTD., TOYOTA SCHOOL FOUNDATIONInventors: Yuichi Furukawa, Masahiro Okumiya, Yoshiki Tsunekawa, Nao Kumemoto, Fumio Kawahara, Katsuhiro Takami
-
Patent number: 8445847Abstract: A technique for an infrared radiation thermometer used for thermography detects measurement abnormality of the infrared radiation thermometer and estimates the causes of the measurement abnormality such as contamination of an objective lens and a malfunction in a mechanism section of the infrared radiation thermometer.Type: GrantFiled: March 25, 2008Date of Patent: May 21, 2013Assignees: Toyota Jidosha Kabushiki Kaisha, MEIWA e-TEC co., ltd.Inventors: Yuichi Furukawa, Shingo Nakamura, Yuji Okada, Fumio Kawahara
-
Patent number: 8413708Abstract: A surface treatment method includes covering a surface of a casting mold with a carbon film containing at least one type of nanocarbon selected from the group including carbon nanocoils, carbon nanotubes and carbon nanofilaments, and further applying fullerenes to that surface. With this surface treatment method being performed on a surface (a cavity surface, etc. of a casting mold) making contact with a molten casting material such as aluminum, etc., sticking of the molten casting material to the mold is inhibited, release resistance of the product is reduced, and release effectiveness is improved. The release effectiveness lasts longer than in the case of a conventional carbon film.Type: GrantFiled: July 19, 2012Date of Patent: April 9, 2013Assignees: Toyota Jidosha Kabushiki Kaisha, MEC International Co., Ltd.Inventors: Yuichi Furukawa, Fumio Kawahara, Hidenori Matsuoka, Hitoshi Kabasawa
-
Patent number: 8376023Abstract: A die-casting die is provided. The die-casting die may include a cavity forming surface. A part of the cavity forming surface may be coated with a surface treatment layer. The surface treatment layer may include a mixture of fibrous carbon and particle carbon and have a thermal conductivity that increases in connection to an increase in an acted pressure.Type: GrantFiled: October 16, 2009Date of Patent: February 19, 2013Assignees: Toyota Jidosha Kabushiki Kaisha, MEC International Co., Ltd.Inventors: Yuichi Furukawa, Fumio Kawahara, Yasushi Iwata, Hiroaki Iwahori, Jun Yaokawa, Atsuto Okamoto
-
Publication number: 20130021601Abstract: A technique for an infrared radiation thermometer used for theiniography that detects measurement abnormality of an infrared radiation thermometer and estimates the causes of the measurement abnormality such as contamination of an objective lens and a malfunction in a mechanism section of the infrared radiation thermometer.Type: ApplicationFiled: August 6, 2012Publication date: January 24, 2013Applicants: MEIWA E-TEC CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Yuichi FURUKAWA, Shingo NAKAMURA, Yuji OKADA, Fumio KAWAHARA
-
Patent number: 8340468Abstract: Feature points (41, 42, 43) in the heat image (10) of a casting die (1) are extracted and a predetermined geometrical conversion processing is performed on the heat image (10) such that the feature points are superimposed on the reference feature points (61, 62, 63) set in a reference heat image (30) picked up previously to generate a corrected heat image (20). A difference image (40) is generated by superimposing the corrected heat image (20) and the reference heat image (30) such that the corrected feature points (51, 52, 53) in the corrected heat image (20) is superimposed on the corresponding reference feature points (61, 62, 63). With such an arrangement, a highly reliable difference image can be generated even when the imaging field of vision slips off among a plurality of heat images.Type: GrantFiled: March 25, 2008Date of Patent: December 25, 2012Assignees: Toyota Jidosha Kabushiki Kaisha, MEIWA e-TEC co., ltd.Inventors: Yuichi Furukawa, Shingo Nakamura, Yuji Okada, Fumio Kawahara
-
Publication number: 20120288622Abstract: A surface treatment method includes covering a surface of a casting mold with a carbon film containing at least one type of nanocarbon selected from the group consisting of carbon nanocoils, carbon nanotubes and carbon nanofilaments, and further applying fullerenes to that surface. With this surface treatment method being performed on a surface (a cavity surface, etc. of a casting mold) making contact with a molten casting material such as aluminum, etc., sticking of the molten casting material to the mold is inhibited, release resistance of the product is reduced, and release effectiveness is improved. The release effectiveness lasts longer than in the case of a conventional carbon film.Type: ApplicationFiled: July 19, 2012Publication date: November 15, 2012Applicants: MEC INTERNATIONAL CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Yuichi FURUKAWA, Fumio KAWAHARA, Hidenori MATSUOKA, Hitoshi KABASAWA
-
Patent number: 8256493Abstract: A surface treatment method includes covering a surface of a casting mold with a carbon film containing at least one type of nanocarbon selected from the group of carbon nanocoils, carbon nanotubes and carbon nanofilaments, and further applying fullerenes to that surface. With this surface treatment method being performed on a surface (a cavity surface, etc. of a casting mold) making contact with a molten casting material such as aluminum, etc., sticking of the molten casting material to the mold is inhibited, release resistance of the product is reduced, and release effectiveness is improved. The release effectiveness lasts longer than in the case of a conventional carbon film.Type: GrantFiled: July 30, 2009Date of Patent: September 4, 2012Assignees: Toyota Jidosha Kabushiki Kaisha, MEC International Co., Ltd.Inventors: Yuichi Furukawa, Fumio Kawahara, Hidenori Matsuoka, Hitoshi Kabasawa
-
Publication number: 20110223339Abstract: A method for a surface processing is provided. The method may include coating a surface of an object by a carbon coating including at least one type of a nano carbon selected from a carbon nano coil, a carbon nanotube and a carbon nano filament and applying liquid including fullerene to the carbon coating.Type: ApplicationFiled: December 8, 2009Publication date: September 15, 2011Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC INTERNATIONAL CO., LTD.Inventors: Yuichi Furukawa, Fumio Kawahara
-
Publication number: 20110209844Abstract: PROBLEMS A method for die-casting that fluidity of molten material is satisfactory and the molten material solidifies with suitable speed is realized. MEANS OF SOLVING THE PROBLEMS A die-casting die 12 comprises a cavity forming surface 9b. A part of the cavity forming surface 9b is coated with a surface treatment layer 24 having a thermal conductivity that increases in connection to an increase in an acted pressure. Satisfactory fluidity is kept at a cavity forming surface 8b coated with the surface treatment layer 24 until a filling of the molten material to the cavity 9 is completed. The molten material is cooled by the cavity forming surface 8b coated with the surface treatment layer 24 increasing the thermal conductivity after the filling of the molten material to the cavity 9 is completed.Type: ApplicationFiled: October 16, 2009Publication date: September 1, 2011Applicants: Toyota Jidosha Kabushkiki Kasha, Mec International Co. LtdInventors: Yuichi Furukawa, Fumio Kawahara, Yasushi Iwata, Hiroaki Iwahori, Jun Yaokawa, Atsuto Okamoto
-
Publication number: 20110133053Abstract: A surface treatment method includes covering a surface of a casting mold with a carbon film containing at least one type of nanocarbon selected from the group of carbon nanocoils, carbon nanotubes and carbon nanofilaments, and further applying fullerenes to that surface. With this surface treatment method being performed on a surface (a cavity surface, etc. of a casting mold) making contact with a molten casting material such as aluminum, etc., sticking of the molten casting material to the mold is inhibited, release resistance of the product is reduced, and release effectiveness is improved. The release effectiveness lasts longer than in the case of a conventional carbon film.Type: ApplicationFiled: July 30, 2009Publication date: June 9, 2011Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEC INTERNATIONAL CO., LTD.Inventors: Yuichi Furukawa, Fumio Kawahara, Hidenori Matsuoka, Hitoshi Kabasawa
-
Publication number: 20100098321Abstract: Feature points (41, 42, 43) in the heat image (10) of a casting die (1) are extracted and a predetermined geometrical conversion processing is performed on the heat image (10) such that the feature points are superimposed on the reference feature points (61, 62, 63) set in a reference heat image (30) picked up previously to generate a corrected heat image (20). A difference image (40) is generated by superimposing the corrected heat image (20) and the reference heat image (30) such that the corrected feature points (51, 52, 53) in the corrected heat image (20) is superimposed on the corresponding reference feature points (61, 62, 63). With such an arrangement, a highly reliable difference image can be generated even when the imaging field of vision slips off among a plurality of heat images.Type: ApplicationFiled: March 25, 2008Publication date: April 22, 2010Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, MEIWA E-TEC CO., LTD.Inventors: Yuichi Furukawa, Shingo Nakamura, Yuji Okada, Fumio Kawahara