Patents by Inventor Fumito Nishida

Fumito Nishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11670741
    Abstract: Disclosed is a method of making an optoelectronic device that incorporates a crosslinked resin-linear polyorganosiloxane.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: June 6, 2023
    Assignees: Rohm and Haas Electronic Materials LLC, DuPont Toray Specialty Materials Kabushiki Kaisha, DDP Specialty Electronic Materials US 9, LLC
    Inventors: Masaaki Amako, Anna Ya Ching Feng, Fumito Nishida
  • Patent number: 11015025
    Abstract: A composition comprising: (a) a component comprising units of Ar1SiO3/2, wherein Ar1 is C6-C20 aryl and units of PhCH3SiO2/2, and having Mw from 20,000 to 90,000; and (b) an elastomeric component comprising: (i) a straight-chain organopolysiloxane having at least two silicon-bonded alkenyl groups and at least one silicon-bonded aryl group; (ii) a branched-chain organopolysiloxane having formula: (RSiO3/2)a(R2SiO2/2)b(R3SiO1/2)c(SiO4/2)d(XO1/2)e where each R is the same or different C1-C20 hydrocarbyl group, 0.1 to 40 mole % of all R's are alkenyl, more than 10 mole % of all R's are C6-C20 aryl, X is a hydrogen atom or alkyl, a is 0.45 to 0.95, b is 0 to 0.25, c is 0.05 to 0.5, d is 0 to 0.1, e is 0 to 0.1, c/a is 0.1 to 0.5; (iii) an organopolysiloxane having at least two silicon-bonded hydrogen atoms; and (iv) a hydrosilylation catalyst.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 25, 2021
    Assignee: Dow Silicones Corporation
    Inventors: Steven Swier, Fumito Nishida
  • Publication number: 20200144459
    Abstract: Disclosed is a method of making an optoelectronic device that incorporates a crosslinked resin-linear polyorganosiloxane.
    Type: Application
    Filed: July 13, 2018
    Publication date: May 7, 2020
    Inventors: Masaaki Amako, Anna Ya Ching Feng, Fumito Nishida
  • Publication number: 20200140619
    Abstract: A composition comprising: (a) a component comprising units of Ar1SiO3/2, wherein Ar1 is C6-C20 aryl and units of PhCH3SiO2/2, and having Mw from 20,000 to 90,000; and (b) an elastomeric component comprising: (i) a straight-chain organopolysiloxane having at least two silicon-bonded alkenyl groups and at least one silicon-bonded aryl group; (ii) a branched-chain organopolysiloxane having formula: (RSiO3/2)a(R2SiO2/2)b(R3SiO1/2)c(SiO4/2)d(XO1/2)e where each R is the same or different C1-C20 hydrocarbyl group, 0.1 to 40 mole % of all R's are alkenyl, more than 10 mole % of all R's are C6-C20 aryl, X is a hydrogen atom or alkyl, a is 0.45 to 0.95, b is 0 to 0.25, c is 0.05 to 0.5, d is 0 to 0.1, e is 0 to 0.1, c/a is 0.1 to 0.5; (iii) an organopolysiloxane having at least two silicon-bonded hydrogen atoms; and (iv) a hydrosilylation catalyst.
    Type: Application
    Filed: June 19, 2018
    Publication date: May 7, 2020
    Inventors: Steven Swier, Fumito Nishida
  • Patent number: 10351704
    Abstract: Described are hydrosilylation-curable polyorganosiloxane compositions containing sulfur, including hydrosilylation-curable polyorganosiloxane prepolymers and hydrosilylation-cured polyorganosiloxane polymer products made therefrom, as well as methods of preparing and using the same, devices comprising or prepared from the same, and sulfur-functional organosiloxanes useful therein.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: July 16, 2019
    Assignee: Dow Corning Corporation
    Inventors: Fumito Nishida, Steven Swier, Yanhu Wei
  • Patent number: 10153409
    Abstract: Vacuum lamination methods for forming conformally coated articles having a preformed lamination layer conformally coated to or on an object such as an LED array are provided. These vacuum lamination methods utilize a single heating step to heat a middle portion of the preformed lamination layer to a flowable condition prior to the preformed lamination layer being conformally coated over the article, such as the array of light emitting diodes disposed on an inner portion of a first side of a submount wafer.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: December 11, 2018
    Assignee: Dow Silicones Corporation
    Inventors: Michelle R. Cummings, Fumito Nishida, Nick E. Shephard
  • Patent number: 9902811
    Abstract: This invention relates to a curable silicone composition comprising: (A) a straight-chain organopolysiloxane having at least two alkenyl groups in a molecule; (B) an organopolysiloxane represented by the following average unit formula: (R1SiO3/2)a(R12SiO2/2)b(R13SiO1/2)c(SiO4/2)d(XO1/2)e wherein, R1 each independently represent an alkyl group having from 1 to 12 carbons, an alkenyl group having from 2 to 12 carbons, an aryl group having from 6 to 20 carbons, an aralkyl group having from 7 to 20 carbons, or a group in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms, with the proviso that at least two R1 in a molecule are the alkenyl groups, X is a hydrogen atom or an alkyl group, a is a number from 0 to 0.3, b is 0 or a positive number, c is a positive number, d is a positive number, e is a number from 0 to 0.4, a+b+c+d=1, c/d is a number from 0 to 10, and b/d is a number from 0 to 0.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: February 27, 2018
    Assignees: DOW CORNING TORAY CO. LTD., DOW CORNING CORPORATION
    Inventors: Stanton James Dent, Tomohiro Iimura, Yusuke Miyamoto, Yoshitsugu Morita, Fumito Nishida, Emil Radkov, Jacob William Steinbrecher, Hiroaki Yoshida, Makoto Yoshitake
  • Publication number: 20170309799
    Abstract: Vacuum lamination methods for forming conformally coated articles having a preformed lamination layer conformally coated to or on an object such as an LED array are provided. These vacuum lamination methods utilize a single heating step to heat a middle portion of the preformed lamination layer to a flowable condition prior to the preformed lamination layer being conformally coated over the article, such as the array of light emitting diodes disposed on an inner portion of a first side of a submount wafer.
    Type: Application
    Filed: October 21, 2015
    Publication date: October 26, 2017
    Applicant: Dow Corning Corporation
    Inventors: MICHELLE R. CUMMINGS, FUMITO NISHIDA, NICK E. SHEPHARD
  • Publication number: 20170306150
    Abstract: Described are hydrosilylation-curable polyorganosiloxane compositions containing sulfur, including hydrosilylation-curable polyorganosiloxane prepolymers and hydrosilylation-cured polyorganosiloxane polymer products made therefrom, as well as methods of preparing and using the same, devices comprising or prepared from the same, and sulfur-functional organosiloxanes useful therein.
    Type: Application
    Filed: November 6, 2015
    Publication date: October 26, 2017
    Applicant: Dow Corning Corporation
    Inventors: FUMITO NISHIDA, STEVEN SWIER, YANHU WEI
  • Patent number: 9493634
    Abstract: An additive for a silicone encapsulant has the structure: (I) R1Ce(OSi—R2) I I a R3 wherein a is 3 or 4, wherein R1 and R2 are each —O—Si(R4)(R5)(R6) and each of R4, R5, and R6 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups, and wherein R3 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups. More specifically, the cerium is cerium (III) or (IV). The additive is formed using a method that includes the step of reacting cerium metal or a cerium (III) or (IV) compound with a hydroxyl functional organosiloxane. An encapsulant includes the additive and a polyorganosiloxane. The encapsulant can be utilized to form a device that includes an optoelectronic component and the encapsulant disposed on the optoelectronic component. The device is formed using a method that includes the step of disposing the encapsulant on the optoelectronic device.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: November 15, 2016
    Assignee: DOW CORNING CORPORATION
    Inventors: Don L Kleyer, Fumito Nishida, Randall G Schmidt, Adam C Tomasik
  • Publication number: 20160168359
    Abstract: An additive for a silicone encapsulant has the structure: (I) R1Ce(OSi—R2) I I a R3 wherein a is 3 or 4, wherein R1 and R2 are each —O—Si(R4)(R5)(R6) and each of R4, R5, and R6 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups, and wherein R3 is independently chosen from C1-C10 hydrocarbyl groups, C1-C10 alkyl groups, C2-C10 alkenyl groups, and C6-C10 aryl groups. More specifically, the cerium is cerium (III) or (IV). The additive is formed using a method that includes the step of reacting cerium metal or a cerium (III) or (IV) compound with a hydroxyl functional organosiloxane. An encapsulant includes the additive and a polyorganosiloxane. The encapsulant can be utilized to form a device that includes an optoelectronic component and the encapsulant disposed on the optoelectronic component. The device is formed using a method that includes the step of disposing the encapsulant on the optoelectronic device.
    Type: Application
    Filed: February 9, 2014
    Publication date: June 16, 2016
    Inventors: Don L KLEYER, Fumito NISHIDA, Randall G SCHMIDT, Adam C TOMASIK
  • Publication number: 20150376344
    Abstract: This invention relates to a curable silicone composition comprising: (A) a straight-chain organopolysiloxane having at least two alkenyl groups in a molecule; (B) an organopolysiloxane represented by the following average unit formula: (R1SiO3/2)a (R12SiO2/2)b(R13SiO1/2)c(SiO4/2)d(XO1/2)e wherein, R1 each independently represent an alkyl group having from 1 to 12 carbons, an alkenyl group having from 2 to 12 carbons, an aryl group having from 6 to 20 carbons, an aralkyl group having from 7 to 20 carbons, or a group in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms, with the proviso that at least two R1 in a molecule are the alkenyl groups, X is a hydrogen atom or an alkyl group, a is a number from 0 to 0.3, b is 0 or a positive number, c is a positive number, d is a positive number, e is a number from 0 to 0.4, a+b+c+d=1, c/d is a number from 0 to 10, and b/d is a number from 0 to 0.
    Type: Application
    Filed: February 21, 2014
    Publication date: December 31, 2015
    Inventors: Stanton James Dent, Tomohiro Iimura, Yusuke Miyamoto, Yoshitsugu Morita, Fumito Nishida, Emil Radkov, Jacob William Steinbrecher, Hiroaki Yoshida, Makoto Yoshitake
  • Patent number: 8821992
    Abstract: A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or non-liquid crystalline materials, wherein the liquid crystal formulation has an I?SmA*?SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., a tilt angle of about 22.5°±6° or about 45°±6°, a spontaneous polarization of less than about 50 nC/cm2., and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 2, 2014
    Assignees: Dow Corning Corporation, Cambridge Enterprise Ltd.
    Inventors: Jonathan Paul Hannington, Terry Victor Clapp, Fumito Nishida, Russel Keith King, Omar Farooq, Martin Grasmann, William Alden Crossland, Harry James Coles, Anthony Bernard Davey, Huan Xu, Oliver Hadeler, Mykhaylo Pivnenko
  • Patent number: 8368831
    Abstract: A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or organic non-liquid crystalline materials, wherein the liquid crystal formulation is nano-phase segregated in the SmC* phase, has an I?SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., has a tilt angle of about 22.5°±6° or about 45°±6°, and has a spontaneous polarization of less than about 50 nC/cm2, and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 5, 2013
    Assignees: Dow Corning Corporation, Cambridge Enterprise Ltd.
    Inventors: Jonathan Paul Hannington, Terry Victor Clapp, Fumito Nishida, Russell Keith King, Omar Farooq, Martin Grasmann, William Alden Crossland, Harry James Coles, Anthony Bernard Davey, Huan Xu, Oliver Hadeler, Mykhaylo Pivnenko
  • Patent number: 8025937
    Abstract: A liquid crystal electro-optic device. The liquid crystal electro-optic device comprises at least one liquid crystal cell comprising: a pair of substrates having a gap therebetween; a pair of electrodes, the pair of electrodes positioned on one of the substrates or one electrode positioned on each substrate; and a ferroelectric, oligosiloxane liquid crystal material disposed in the gap between the pair of substrates, the ferroelectric, oligosiloxane liquid crystal material exhibiting an I-? SmC* phase sequence wherein the liquid crystal electro-optic device is bistable in operation. The invention also involves a method for making a liquid crystal electro-optic device.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: September 27, 2011
    Assignees: Dow Corning Corporation, Cambridge Enterprise Ltd.
    Inventors: Terry Victor Clapp, Fumito Nishida, Jonathan Paul Hannington, Russell Keith King, Omar Farooq, William Alden Crossland, Joo-Nyung Jang, Huan Xu, Anthony Bernard Davey
  • Publication number: 20100283925
    Abstract: A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or non-liquid crystalline materials, wherein the liquid crystal formulation has an I?SmA*?SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., a tilt angle of about 22.5°±6° or about 45°±6°, a spontaneous polarization of less than about 50 nC/cm2., and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described.
    Type: Application
    Filed: October 26, 2007
    Publication date: November 11, 2010
    Applicants: DOW CORNING CORPORATION, CAMBRIDGE ENTERPRISE LTD.
    Inventors: Jonathan Paul Hannington, Terry Victor Clapp, Fumito Nishida, Russell Keith King, Omar Farooq, Martin Grasmann, William Alden Crossland, Harry James Coles, Anthony Bernard Davey, Huan Xu, Oliver Hadeler, Mykhaylo Pivnenko
  • Publication number: 20100283927
    Abstract: A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or organic non-liquid crystalline materials, wherein the liquid crystal formulation is nano-phase segregated in the SmC* phase, has an I?SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., has a tilt angle of about 22.5°±6° or about 45°±6°, and has a spontaneous polarization of less than about 50 nC/cm2, and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described.
    Type: Application
    Filed: October 19, 2007
    Publication date: November 11, 2010
    Applicants: DOW CORNING CORPORATION, CAMBRIDGE ENTERPRISE LTD.
    Inventors: Jonathan Paul Hannington, Terry Victor Clapp, Fumito Nishida, Russell Keith King, Omar Farooq, Martin Grasmann, William Alden Crossland, Harry James Coles, Anthony Bernard Davey, Huan Xu, Oliver Hadeler, Mykhaylo Pivnenko
  • Publication number: 20090185129
    Abstract: A liquid crystal electro-optic device. The liquid crystal electro-optic device comprises at least one liquid crystal cell comprising: a pair of substrates having a gap therebetween; a pair of electrodes, the pair of electrodes positioned on one of the substrates or one electrode positioned on each substrate; and a ferroelectric, oligosiloxane liquid crystal material disposed in the gap between the pair of substrates, the ferroelectric, oligosiloxane liquid crystal material exhibiting an I-? SmC* phase sequence wherein the liquid crystal electro-optic device is bistable in operation. The invention also involves a method for making a liquid crystal electro-optic device.
    Type: Application
    Filed: April 12, 2007
    Publication date: July 23, 2009
    Applicants: DOW CORNING CORPORATION, CAMBRIDGE ENTERPRISE LTD
    Inventors: Terry Victor Clapp, Fumito Nishida, Jonathan Paul Hannington, Russell Keith King, Omar Farooq, William Alden Crossland, Joo-Nyung Jang, Huan Xu, Anthony Bernard Davey
  • Publication number: 20070082133
    Abstract: A method of metallizing a silicone rubber substrate, the method comprising the steps of (i) depositing a primer layer of aluminum on a surface of a silicone rubber substrate, and (ii) depositing a layer of a ductile metal on the primer layer of aluminum, wherein the ductile metal is selected from gold, platinum, palladium, copper, silver, aluminum, and indium.
    Type: Application
    Filed: August 26, 2004
    Publication date: April 12, 2007
    Inventors: Fumito Nishida, Timothy Lauer, Udo Pernisz
  • Publication number: 20070003702
    Abstract: A method of preparing a metal-silicone rubber composite, the method comprising the steps of (i) depositing a layer of gold on a surface of a mold; (ii) depositing a primer layer of a metal on the layer of gold, wherein the metal is selected from aluminum, chromium, titanium, and copper, (iii) applying a radiation-curable silicone composition on the primer layer, (iv) curing the silicone composition with radiation to form a silicone rubber, and (v) removing the silicone rubber from the mold, whereby the layer of gold and the primer layer are transferred to the silicone rubber.
    Type: Application
    Filed: August 26, 2004
    Publication date: January 4, 2007
    Inventors: Fumito Nishida, Timothy Lauer, Udo Pernisz