Patents by Inventor Fumiyuki Kawashima

Fumiyuki Kawashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11129282
    Abstract: According to one embodiment, a method for manufacturing a ceramic circuit board is disclosed. The ceramic circuit board includes a copper plate bonded to at least one surface of a ceramic substrate via a brazing material layer including Ag, Cu, and a reactive metal. The method includes: preparing a ceramic circuit board in which a copper plate is bonded on a ceramic substrate via a brazing material layer, and a portion of the brazing material layer is exposed between a pattern shape of the copper plate; a first chemical polishing process of chemically polishing the portion of the brazing material layer; and a first brazing material etching process of etching the chemically polished portion of the brazing material layer by using an etchant having a pH of 6 or less and including one type or two types selected from hydrogen peroxide and ammonium peroxodisulfate.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: September 21, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Hiromasa Kato, Hideaki Hirabayashi, Fumiyuki Kawashima, Akito Sasaki
  • Publication number: 20200170118
    Abstract: According to one embodiment, a method for manufacturing a ceramic circuit board is disclosed. The ceramic circuit board includes a copper plate bonded to at least one surface of a ceramic substrate via a brazing material layer including Ag, Cu, and a reactive metal. The method includes: preparing a ceramic circuit board in which a copper plate is bonded on a ceramic substrate via a brazing material layer, and a portion of the brazing material layer is exposed between a pattern shape of the copper plate; a first chemical polishing process of chemically polishing the portion of the brazing material layer; and a first brazing material etching process of etching the chemically polished portion of the brazing material layer by using an etchant having a pH of 6 or less and including one type or two types selected from hydrogen peroxide and ammonium peroxodisulfate.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Hiromasa KATO, Hideaki HIRABAYASHI, Fumiyuki KAWASHIMA, Akito SASAKI
  • Patent number: 7837900
    Abstract: An electrode material includes an alloy having a Gd3Ni8Sn16 type crystal structure.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: November 23, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Shinsuke Matsuno, Takao Sawa, Tatsuoki Kono, Norio Takami, Fumiyuki Kawashima, Toshiya Sakamoto
  • Publication number: 20100193001
    Abstract: A thermoelectric conversion module (10) comprises a first electrode member (13) arranged on a low temperature side, a second electrode member (14) arranged on a high temperature side, and p-type and n-type thermoelectric elements (11 and 12) arranged between and connected electrically with both the first and second electrode members (13 and 14). The thermoelectric elements (11 and 12) are composed of a thermoelectric material (half-Heusler material) containing an intermetallic compound having an MgAgAs crystal structure as a main phase and have a fracture toughness value K1C of not less than 1.3 MPa·m1/2 and less than 10 MPa·m1/2.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 5, 2010
    Inventors: Shinsuke Hirono, Masami Okamura, Fumiyuki Kawashima
  • Patent number: 7604897
    Abstract: A nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The negative electrode contains an intermetallic compound having an La3Co2Sn7 type crystal structure of which alkaline-earth metal atoms occupy La sites. The nonaqueous electrolyte contains at least one of methyl ethyl carbonate and dimethyl carbonate.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: October 20, 2009
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Shinsuke Matsuno, Takao Sawa, Yumi Fujita, Tatsuoki Kono, Norio Takami, Fumiyuki Kawashima
  • Patent number: 7556887
    Abstract: A nonaqueous electrolyte secondary battery includes a case, a nonaqueous electrolyte provided in the case, a positive electrode provided in the case and capable of absorbing-releasing Li, and a negative electrode provided in the case and containing an alloy that has a La3Co2Sn7 type crystal structure.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 7, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinsuke Matsuno, Tatsuoki Kohno, Takao Sawa, Fumiyuki Kawashima, Norio Takami
  • Patent number: 7501207
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below: R1-a-bMgaTbNiZ-X-Y-?M1XM2YMn???(1).
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: March 10, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Publication number: 20090038667
    Abstract: A thermoelectric conversion module (10) used at temperatures of 300° C. or more includes a first substrate (15) disposed on a low temperature side, a second substrate (16) disposed on a high temperature side, first and second electrode members (13, 14) provided to face the element mounting regions of these substrates (15, 16), and a plurality of thermoelectric elements (11, 12) disposed between the electrode members (13, 14). An occupied area ratio of the thermoelectric elements (11, 12) in the module is set to 69% or more, and an output per unit area of the thermoelectric conversion module (10) is made to increase.
    Type: Application
    Filed: November 22, 2006
    Publication date: February 12, 2009
    Inventors: Shinsuke Hirono, Masami Okamura, Fumiyuki Kawashima
  • Patent number: 7300720
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below: R1-a-bMgaTbNiZ-X-Y-?M1XM2YMn?.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: November 27, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Publication number: 20070259264
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below: R1-a-bMgaTbNiZ-X-Y-?M1XM2YMn???(1)
    Type: Application
    Filed: April 25, 2007
    Publication date: November 8, 2007
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Publication number: 20070190417
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below: R1-a-bMgaTbNiZ-X-Y-?M1XM2YMn???(1)
    Type: Application
    Filed: April 25, 2007
    Publication date: August 16, 2007
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Publication number: 20070054189
    Abstract: A nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The negative electrode contains an intermetallic compound having an La3Co2Sn7 type crystal structure of which alkaline-earth metal atoms occupy La sites. The nonaqueous electrolyte contains at least one of methyl ethyl carbonate and dimethyl carbonate.
    Type: Application
    Filed: August 25, 2006
    Publication date: March 8, 2007
    Inventors: Shinsuke Matsuno, Takao Sawa, Yumi Fujita, Tatsuoki Kono, Norio Takami, Fumiyuki Kawashima
  • Publication number: 20060254678
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below: R1-a-bMgaTbNiZ-X-Y-?M1XM2YMn???(1)
    Type: Application
    Filed: December 1, 2005
    Publication date: November 16, 2006
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Publication number: 20060110659
    Abstract: An electrode material includes an alloy having a Gd3Ni8Sn16 type crystal structure.
    Type: Application
    Filed: November 21, 2005
    Publication date: May 25, 2006
    Inventors: Shinsuke Matsuno, Takao Sawa, Tatsuoki Kono, Norio Takami, Fumiyuki Kawashima, Toshiya Sakamoto
  • Patent number: 7005212
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below: R1-a-bMgaTbNiZ-X-Y-?M1XM2YMn?.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: February 28, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Publication number: 20050214643
    Abstract: A nonaqueous electrolyte secondary battery includes a case, a nonaqueous electrolyte provided in the case, a positive electrode provided in the case and capable of absorbing-releasing Li, and a negative electrode provided in the case and containing an alloy that has a La3Co2Sn7 type crystal structure.
    Type: Application
    Filed: December 16, 2004
    Publication date: September 29, 2005
    Inventors: Shinsuke Matsuno, Tatsuoki Kohno, Takao Sawa, Fumiyuki Kawashima, Norio Takami
  • Publication number: 20030096164
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below:
    Type: Application
    Filed: June 27, 2002
    Publication date: May 22, 2003
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Patent number: 6546968
    Abstract: A bond magnet comprises a molded body in which a mixture of flake of magnet material comprising rare earth element-iron-nitrogen as main component, TbCu7 type crystal phase as a principal phase and a thickness of less than 200 &mgr;m a binder is compression molded. A compression molded body constituting a bond magnet has a density of 6×103 kg/m3 or more. In the step of compression molding a mixture of magnet material and binder, pressure is applied a plurality of times, or pressure is applied while rotating a punch and die, or the binder is cured while applying pressure to obtain such a bond magnet with good reproducibility. Such a bond magnet has excellent magnetic properties and corrosion resistance.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: April 15, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsutoshi Nakagawa, Fumiyuki Kawashima, Takao Sawa, Shinya Sakurada, Tomohisa Arai
  • Publication number: 20020036558
    Abstract: A bond magnet comprises a molded body in which a mixture of flake of magnet material comprising rare earth element-iron-nitrogen as main component, TbCu7 type crystal phase as a principal phase and a thickness of less than 200 &mgr;m a binder is compression molded. A compression molded body constituting a bond magnet has a density of 6×103 kg/m3 or more. In the step of compression molding a mixture of magnet material and binder, pressure is applied a plurality of times, or pressure is applied while rotating a punch and die, or the binder is cured while applying pressure to obtain such a bond magnet with good reproducibility. Such a bond magnet has excellent magnetic properties and corrosion resistance.
    Type: Application
    Filed: August 22, 2001
    Publication date: March 28, 2002
    Inventors: Katsutoshi Nakagawa, Fumiyuki Kawashima, Takao Sawa, Shinya Sakurada, Tomohisa Arai
  • Patent number: 6317020
    Abstract: A bond magnet comprises a molded body in which a mixture of flake of magnet material comprising rare earth element-iron-nitrogen as main component, TbCu7 type crystal phase as a principal phase and a thickness of less than 200 &mgr;m a binder is compression molded. A compression molded body constituting a bond magnet has a density of 6×103 kg/m3 or more. In the step of compression molding a mixture of magnet material and binder, pressure is applied a plurality of times, or pressure is applied while rotating a punch and die, or the binder is cured while applying pressure to obtain such a bond magnet with good reproducibility. Such a bond magnet has excellent magnetic properties and corrosion resistance.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: November 13, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsutoshi Nakagawa, Fumiyuki Kawashima, Takao Sawa, Shinya Sakurada, Tomohisa Arai