Patents by Inventor Fusae Shiimori

Fusae Shiimori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913087
    Abstract: Provided is a high-strength steel sheet having excellent ductility, bendability, and TS of 500 MPa or more, in particular, a high-strength thin steel sheet for cans having a sheet thickness of 0.1 to 0.8 mm, the steel sheet having a chemical composition containing C: 0.03-0.15%, Si: 0.01-0.05%, Mn: more than 0.6% and 1.5% or less, P: 0.025% or less, S: 0.02% or less, Al: 0.01-0.10%, N: 0.0005-0.0100%, Ti: 0.005-0.020%, B: 0.0005-0.0100%, and Nb: 0.0050-0.0200% with the balance being Fe and inevitable impurities, in which the steel sheet has a metallic structure containing, in area ratio, 85% or more of ferrite and 1-10% of martensite, the martensite has a grain size of 5 ?m or less, and a ratio of martensite having a grain size of 2 ?m or less is 80% or more.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: February 27, 2024
    Assignee: JFE STEEL CORPORATION
    Inventors: Fusae Shiimori, Hayato Saito, Nobusuke Kariya, Katsumi Kojima
  • Publication number: 20220316023
    Abstract: Provided is a steel sheet for cans with high strength and sufficiently high formability particularly as a material for a can body with a neck portion. The steel sheet for cans of the present disclosure has a chemical composition containing, in mass %, C: 0.010% to 0.130%, Si: 0.04% or less, Mn: 0.10% to 1.00%, P: 0.007% to 0.100%, S: 0.0005% to 0.0090%, Al: 0.001% to 0.100%, N: 0.0050% or less, Ti: 0.0050% to 0.1000%, B: 0.0005% to less than 0.0020%, and Cr: 0.08% or less, where 0.005?(Ti*/48)/(C/12)?0.700 is satisfied; and a microstructure with a proportion of non-recrystallized ferrite of 3% or less, wherein an upper yield stress is 550 MPa to 620 MPa.
    Type: Application
    Filed: June 8, 2020
    Publication date: October 6, 2022
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobusuke KARIYA, Fusae SHIIMORI, Katsumi KOJIMA, Daisuke OTANI
  • Patent number: 11408044
    Abstract: There is provided a high-strength steel sheet and a method for producing the same. The high-strength steel sheet has a specified chemical composition and a steel microstructure including, by area fraction, 75.0% or more tempered martensite, 1.0% or more and 20.0% or less fresh martensite, and 5.0% or more and 20.0% or less retained austenite. A hardness ratio of the fresh martensite to the tempered martensite is 1.5 or more and 3.0 or less, the ratio of the maximum KAM value in the tempered martensite in the vicinity of the heterophase interface between the tempered martensite and the fresh martensite to the average KAM value in the tempered martensite is 1.5 or more and 30.0 or less, and the average of ratios of grain sizes of prior austenite grains in the rolling direction to those in the thickness direction is 2.0 or less.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: August 9, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Hidekazu Minami, Fusae Shiimori, Shinjiro Kaneko, Takashi Kobayashi, Yuji Tanaka
  • Publication number: 20220074031
    Abstract: Provided is a steel sheet for cans. A steel sheet for cans comprises: a chemical composition containing, in mass %, C: 0.010% or more and 0.130% or less, Si: 0.04% or less, Mn: 0.10% or more and 1.00% or less, P: 0.007% or more and 0.100% or less, S: 0.0005% or more and 0.0090% or less, Al: 0.001% or more and 0.100% or less, N: 0.0050% or less, Ti: 0.0050% or more and 0.1000% or less, and Cr: 0.08% or less, and satisfying a relationship 0.005?(Ti*/48)/(C/12)?0.700 where Ti*=Ti?1.5S, with a balance consisting of Fe and inevitable impurities; a microstructure in which a proportion of cementite in ferrite grains is 10% or less; and an upper yield strength of 550 MPa or more.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 10, 2022
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobusuke KARIYA, Fusae SHIIMORI, Katsumi KOJIMA, Daisuke OTANI
  • Patent number: 11078552
    Abstract: A high-strength steel sheet exhibiting excellent ductility and stretch-flangeability, and a method for manufacturing such a high-strength steel sheet. The high-strength steel sheet has a chemical composition including specific proportions of components in which C/Mn is 0.08 to 0.20, the balance being iron and inevitable impurities, and includes microstructures including, in terms of area fraction relative to all the microstructures, 40% to 70% total of ferrite and bainitic ferrite, 5% to 35% martensite and 5% to 30% retained austenite. The proportion of martensite (including retained austenite) adjacent to bainitic ferrite is not less than 60% of all martensite (including retained austenite). The proportion of 4.0 GPa and smaller differences in microhardness measured at 0.5 ?m intervals is not less than 70%. The proportion of microstructures with 8.0 GPa or smaller microhardness is not less than 85% of all the microstructures.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: August 3, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Fusae Shiimori, Shinjiro Kaneko, Yasunobu Nagataki
  • Publication number: 20200332383
    Abstract: Provided is a high-strength steel sheet having excellent ductility, bendability, and TS of 500 MPa or more, in particular, a high-strength thin steel sheet for cans having a sheet thickness of 0.1 to 0.8 mm, the steel sheet having a chemical composition containing C: 0.03-0.15%, Si: 0.01-0.05%, Mn: more than 0.6% and 1.5% or less, P: 0.025% or less, S: 0.02% or less, Al: 0.01-0.10%, N: 0.0005-0.0100%, Ti: 0.005-0.020%, B: 0.0005-0.0100%, and Nb: 0.0050-0.0200% with the balance being Fe and inevitable impurities, in which the steel sheet has a metallic structure containing, in area ratio, 85% or more of ferrite and 1-10% of martensite, the martensite has a grain size of 5 ?m or less, and a ratio of martensite having a grain size of 2 ?m or less is 80% or more.
    Type: Application
    Filed: October 29, 2018
    Publication date: October 22, 2020
    Applicant: JFE STEEL CORPORATION
    Inventors: Fusae SHIIMORI, Hayato SAITO, Nobusuke KARIYA, Katsumi KOJIMA
  • Publication number: 20200040420
    Abstract: There is provided a high-strength steel sheet and a method for producing the same. The high-strength steel sheet has a specified chemical composition and a steel microstructure including, by area fraction, 75.0% or more tempered martensite, 1.0% or more and 20.0% or less fresh martensite, and 5.0% or more and 20.0% or less retained austenite. A hardness ratio of the fresh martensite to the tempered martensite is 1.5 or more and 3.0 or less, the ratio of the maximum KAM value in the tempered martensite in the vicinity of the heterophase interface between the tempered martensite and the fresh martensite to the average KAM value in the tempered martensite is 1.5 or more and 30.0 or less, and the average of ratios of grain sizes of prior austenite grains in the rolling direction to those in the thickness direction is 2.0 or less.
    Type: Application
    Filed: February 9, 2018
    Publication date: February 6, 2020
    Applicant: JFE STEEL CORPORATION
    Inventors: Hidekazu MINAMI, Fusae SHIIMORI, Shinjiro KANEKO, Takashi KOBAYASHI, Yuji TANAKA
  • Patent number: 10435763
    Abstract: A method for producing a cold-rolled steel strip with a yield ratio Re/Rm of at least 0.7, the cold-rolled steel product including iron, unavoidable impurities and (in wt. %) C: 0.05-0.20%, Si: 0.25-1.00%, Mn: 1.0-3.0%, Al: 0.02-1.5%, Cr: 0.1-1.5%, N: <0.02%, P: <0.03%, S: <0.05% and optionally one or more of Ti, Mo, Nb, V, and B, Ti: up to 0.15%, Mo: <2%, Nb: <0.1%, V: <0.12%, and B: 0.0005-0.003%. The cold-rolled flat steel product undergoes heat treatment for 4.5-24 hours at a temperature of 150-400° C. Also, a cold rolled flat steel product discussed above having a structure including at least two phases, selected from (in vol. %) at least 10% tempered martensite, <10% bainite, <10% residual austenite and remainder ferrite, a yield ratio of at least 0.7, a tensile strength of ?750 MPa and a hole expansion of at least 18%.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: October 8, 2019
    Assignees: THYSSENKRUPP STEEL EUROPE AG, JFE STEEL CORPORATION
    Inventors: Brigitte Hammer, Frank Hisker, Thomas Heller, Almir Dzafic, Richard G. Thiessen, Shinjiro Kaneko, Fusae Shiimori
  • Publication number: 20190093190
    Abstract: A high-strength steel sheet exhibiting excellent ductility and stretch-flangeability, and a method for manufacturing such a high-strength steel sheet. The high-strength steel sheet has a chemical composition including specific proportions of components in which C/Mn is 0.08 to 0.20, the balance being iron and inevitable impurities, and includes microstructures including, in terms of area fraction relative to all the microstructures, 40% to 70% total of ferrite and bainitic ferrite, 5% to 35% martensite and 5% to 30% retained austenite. The proportion of martensite (including retained austenite) adjacent to bainitic ferrite is not less than 60% of all martensite (including retained austenite). The proportion of 4.0 GPa and smaller differences in microhardness measured at 0.5 ?m intervals is not less than 70%. The proportion of microstructures with 8.0 GPa or smaller microhardness is not less than 85% of all the microstructures.
    Type: Application
    Filed: January 30, 2017
    Publication date: March 28, 2019
    Applicant: JFE STEEL CORPORATION
    Inventors: Fusae SHIIMORI, Shinjiro KANEKO, Yasunobu NAGATAKI
  • Publication number: 20180195143
    Abstract: This disclosure provides a high-strength thin steel sheet excellent in both tensile strength and elongation with small elongation anisotropy. The high-strength thin steel sheet has a specific chemical composition and a microstructure where a total area ratio of ferrite, tempered bainitic ferrite and bainitic ferrite is 40% or more and 70% or less, an area ratio of martensite is 5% or more and 30% or less, an area ratio of retained austenite is 10% or more and 35% or less, an average equivalent circular diameter of martensite and retained austenite (secondary phase) grains is 2.0 ?m or less, an area ratio of secondary phase grains having an equivalent circular diameter of 2.0 ?m or more is 10% or less, and an average minor axis length of secondary phase grains is 0.40 ?m or less.
    Type: Application
    Filed: August 26, 2016
    Publication date: July 12, 2018
    Applicant: JFE STEEL CORPORATION
    Inventors: Fusae SHIIMORI, Yoshiyasu KAWASAKI, Shinjiro KANEKO, Takeshi YOKOTA, Kazuhiro SETO, Takaaki TANAKA, Yuki TOJI
  • Publication number: 20170029917
    Abstract: A method for producing a cold-rolled steel strip with a yield ratio Re/Rm of at least 0.7, the cold-rolled steel product including iron, unavoidable impurities and (in wt. %) C: 0.05-0.20%, Si: 0.25-1.00%, Mn: 1.0-3.0%, Al: 0.02-1.5%, Cr: 0.1-1.5%, N: <0.Q2%, P: <0.03%, S: <0.05% and optionally one or more of Ti, Mo, Nb, V, and B, Ti: up to 0.15%, Mo: <2%, Nb: <0.1%, V: <0.12%, and B: 0.0005-0.003%. The cold-rolled flat steel product undergoes heat treatment for 4.5-24 hours at a temperature of 150-400° C. Also, a cold rolled flat steel product discussed above having a structure including at least two phases, selected from (in vol. %) at least 10% tempered martensite, <10% bainite, <10% residual austenite and remainder ferrite, a yield ratio of at least 0.7, a tensile strength of ?750 MPa and a hole expansion of at least 18%.
    Type: Application
    Filed: April 14, 2015
    Publication date: February 2, 2017
    Inventors: Brigitte Hammer, Frank Hisker, Thomas Heller, Almir Dzafic, Richard G. Thiessen, Shinjiro Kaneko, Fusae Shiimori