Patents by Inventor Fuxin Sun

Fuxin Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11434467
    Abstract: Disclosed is an Aspergillus niger seed continuous culture method, comprising the steps of: (1) at a startup stage, Aspergillus niger spores are inoculated into a seed culture medium to obtain a seed liquid; (2) at a seed continuous culture stage, continuous dispersion treatment is performed on the seed liquid obtained in step (1), continuous culture is performed on the seed liquid obtained by dispersion, and meanwhile, a fresh seed feed medium is replenished; and (3) at a stop stage, the replenishment of the fresh seed feed medium and the dispersion treatment are stopped, continuous culture is performed to obtain a seed liquid, and then the seed liquid is transferred into the fermentation medium for fermentation culture. The method according to the present invention makes breakthrough to solve problems that multi-cellular filamentous bacteria grow slowly and mycelium pellets are easy to lose in continuous culture, thus fully achieving seed continuous culture.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: September 6, 2022
    Assignees: Jiangsu Guoxin Union Energy Co., Ltd, JIANGNAN UNIVERSITY
    Inventors: Guiyang Shi, Zhijie Hu, Youran Li, Xiaodong Jiang, Sai Jin, Fuxin Sun, Cheng Zhang, Dongjiao Zhou, Jiawei Lu, Maodong Miao, Zihao Fan
  • Publication number: 20200231929
    Abstract: Disclosed is an Aspergillus niger seed continuous culture method, comprising the steps of: (1) at a startup stage, Aspergillus niger spores are inoculated into a seed culture medium to obtain a seed liquid; (2) at a seed continuous culture stage, continuous dispersion treatment is performed on the seed liquid obtained in step (1), continuous culture is performed on the seed liquid obtained by dispersion, and meanwhile, a fresh seed feed medium is replenished; and (3) at a stop stage, the replenishment of the fresh seed feed medium and the dispersion treatment are stopped, continuous culture is performed to obtain a seed liquid, and then the seed liquid is transferred into the fermentation medium for fermentation culture. The method according to the present invention makes breakthrough to solve problems that multi-cellular filamentous bacteria grow slowly and mycelium pellets are easy to lose in continuous culture, thus fully achieving seed continuous culture.
    Type: Application
    Filed: December 24, 2018
    Publication date: July 23, 2020
    Applicants: Jiangsu Guoxin Union Energy Co.,Ltd, JIANGNAN UNIVERSITY
    Inventors: Guiyang SHI, Zhijie HU, Youran LI, Xiaodong JIANG, Sai JIN, Fuxin SUN, Cheng ZHANG, Dongjiao ZHOU, Jiawei LU, Maodong MIAO, Zihao FAN
  • Patent number: 10618940
    Abstract: The invention discloses a method for increasing citrate production from genome reconstructed Aspergillus niger. The method is to insert a gene of low affinity glucose transporter, LGT1, to genome of A. niger. The expression level of LGT1 is under control of promoter Pgas. The genome reconstructed A. niger is tolerant to higher fermentation temperature and lower pH than that of the parental strain. Moreover, the production, yield and purity of product from reconstructed A. niger are higher than that of parental strain, and the fermentation time is shorter.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 14, 2020
    Assignee: Jiangnan University
    Inventors: Long Liu, Jian Chen, Guocheng Du, Jianghua Li, Xian Yin, Zhijie Hu, Jianwei Jiang, Fuxin Sun, Sai Jin, Cheng Zhang, Xiaodong Jiang
  • Patent number: 10612007
    Abstract: The invention discloses a method for improving citric acid production by Aspergillus niger fermentation, which integrates Aspergillus niger GABA pathway succinate semialdehyde dehydrogenase SSD gene into Aspergillus niger genome to obtain recombinant Aspergillus niger strain, and uses recombinant black The Aspergillus strain ferments to produce citric acid; the expression of the succinate semialdehyde dehydrogenase SSD gene is regulated by the Pgas promoter. The method of the invention realizes the expression of succinate semialdehyde dehydrogenase SSD in Aspergillus niger to enhance the GABA pathway so as to strengthen the TCA cycle and promote the synthesis of citric acid.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 7, 2020
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Long Liu, Jian Chen, Guocheng Du, Jianghua Li, Xian Yin, Zhijie Hu, Jianwei Jiang, Fuxin Sun, Sai Jin, Cheng Zhang, Xiaodong Jiang
  • Publication number: 20180194814
    Abstract: The invention discloses a method for increasing citrate production from genome reconstructed Aspergillus niger. The method is to insert a gene of low affinity glucose transporter, LGT1, to genome of A. niger. The expression level of LGT1 is under control of promoter Pgas. The genome reconstructed A. niger is tolerant to higher fermentation temperature and lower pH than that of the parental strain. Moreover, the production, yield and purity of product from reconstructed A. niger are higher than that of parental strain, and the fermentation time is shorter.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 12, 2018
    Inventors: Long Liu, Jian Chen, Guocheng Du, Jianghua Li, Xian Yin, Zhijie Hu, Jianwei Jiang, Fuxin Sun, Sai Jin, Cheng Zhang, Xiaodong Jiang
  • Publication number: 20180195052
    Abstract: The invention discloses a method for improving citric acid production by Aspergillus niger fermentation, which integrates Aspergillus niger GABA pathway succinate semialdehyde dehydrogenase SSD gene into Aspergillus niger genome to obtain recombinant Aspergillus niger strain, and uses recombinant black The Aspergillus strain ferments to produce citric acid; the expression of the succinate semialdehyde dehydrogenase SSD gene is regulated by the Pgas promoter. The method of the invention realizes the expression of succinate semialdehyde dehydrogenase SSD in Aspergillus niger to enhance the GABA pathway so as to strengthen the TCA cycle and promote the synthesis of citric acid.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 12, 2018
    Inventors: Long Liu, Jian Chen, Guocheng Du, Jianghua Li, Xian Yin, Zhijie Hu, Jianwei Jiang, Fuxin Sun, Sai Jin, Cheng Zhang, Xiaodong Jiang