Patents by Inventor Fuyuan Jing

Fuyuan Jing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10392606
    Abstract: A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Grant
    Filed: December 10, 2017
    Date of Patent: August 27, 2019
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Publication number: 20180094251
    Abstract: A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Application
    Filed: December 10, 2017
    Publication date: April 5, 2018
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Patent number: 9868942
    Abstract: A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: January 16, 2018
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Publication number: 20160355793
    Abstract: A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Application
    Filed: June 21, 2016
    Publication date: December 8, 2016
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Patent number: 9399768
    Abstract: A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: July 26, 2016
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Publication number: 20150322466
    Abstract: A method of increasing production of fatty acids comprising introducing into a host cell or organism and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid encoding a mutant acyl-ACP TE or a chimeric C. viscosissima acyl-ACP TE; a host cell or organism comprising the nucleic acid; a mutant acyl-ACP TE or chimeric C. viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Application
    Filed: January 18, 2015
    Publication date: November 12, 2015
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Patent number: 8951762
    Abstract: A method of increasing production of fatty acids comprising introducing into a host cell or organism and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid encoding a mutant acyl-ACP TE or a chimeric C. viscosissima acyl-ACP TE; a host cell or organism comprising the nucleic acid; a mutant acyl-ACP TE or chimeric C. viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: February 10, 2015
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Publication number: 20140186920
    Abstract: A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 3, 2014
    Applicant: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing
  • Publication number: 20130029387
    Abstract: A method of increasing production of fatty acids comprising introducing into a host cell or organism and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid encoding a mutant acyl-ACP TE or a chimeric C. viscosissima acyl-ACP TE; a host cell or organism comprising the nucleic acid; a mutant acyl-ACP TE or chimeric C. viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE; and a method of altering the level of activity of a plant acyl-ACP TE.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Applicant: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Basil J. Nikolau, Marna Yandeau-Nelson, Fuyuan Jing