Patents by Inventor G. Bradley Chadwell

G. Bradley Chadwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9500414
    Abstract: The invention provides methods, apparatus and systems in which there is partial boiling of a liquid in a mini-channel or microchannel. The partial boiling removes heat from an exothermic process.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: November 22, 2016
    Assignee: VELOCYS INC.
    Inventors: Anna Lee Tonkovich, David J. Hesse, Sean P. Fitzgerald, Bin Yang, Ravi Arora, Laura J. Silva, G. Bradley Chadwell, Kai Jarosch, Dongming Qiu
  • Patent number: 9452407
    Abstract: Novel methods of making laminated, microchannel devices are described. Examples include: assembly from thin strips rather than sheets; and hot isostatic pressing (HIPing) to form devices with a hermetically sealed wall. Laminated microchannel articles having novel features are also described. The invention includes processes conducted using any of the articles described.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: September 27, 2016
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Timothy M. Werner, Matthew B. Schmidt, Robert J. Luzenski, G. Bradley Chadwell, James A. Mathias, Abhishek Gupta, David J. Kuhlmann, Thomas D. Yuschak
  • Patent number: 9441777
    Abstract: Provided is a process and apparatus for exchanging heat energy between three or more streams in a millichannel apparatus, which millichannel apparatus may comprise a heat exchanger which may be integrated with a millichannel reactor to form an integrated millichannel processing unit. The combining of a plurality of integrated millichannel apparatus to provide the benefits of large-scale operation is enabled. In particular, the millichannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: September 13, 2016
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, G. Bradley Chadwell, Dongming Qui, Anna Lee Y. Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Publication number: 20160032196
    Abstract: Vapor phase catalytic reactors and methods for using the same for upgrade of fuels produced by fast pyrolysis of biomass are disclosed.
    Type: Application
    Filed: March 15, 2014
    Publication date: February 4, 2016
    Inventors: Zia Abdullah, Slawomir Winecki, G. Bradley Chadwell, Michael A. O'Brian, Russell K. Smith, Stephanie Flamberg, James E. Dvorsky, Rachid Taha, James E. Mathis, Herman P. Benecke, Daniel B. Garbark
  • Patent number: 9192929
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 24, 2015
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qui, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Matthias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Publication number: 20140246625
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 4, 2014
    Applicant: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Publication number: 20140109976
    Abstract: Provided is a process and apparatus for exchanging heat energy between three or more streams in a millichannel apparatus, which millichannel apparatus may comprise a heat exchanger which may be integrated with a millichannel reactor to form an integrated millichannel processing unit. The combining of a plurality of integrated millichannel apparatus to provide the benefits of large-scale operation is enabled. In particular, the millichannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 24, 2014
    Applicant: Velocys, Inc.
    Inventors: James A. Mathias, G. Bradley Chadwell, Dongming Qui, Anna Lee Y. Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Patent number: 8685365
    Abstract: Provided is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation is enabled. In particular, the microchannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: April 1, 2014
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, G. Bradley Chadwell, Annalee Y. Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Publication number: 20130186607
    Abstract: Provided is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation is enabled. In particular, the microchannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 25, 2013
    Applicant: VELOCYS, INC.
    Inventors: James A. Mathias, G. Bradley Chadwell, Dongming Qiu, Annalee Y. Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Publication number: 20130165536
    Abstract: The invention provides methods, apparatus and systems in which there is partial boiling of a liquid in a mini-channel or microchannel. The partial boiling removes heat from an exothermic process.
    Type: Application
    Filed: August 27, 2012
    Publication date: June 27, 2013
    Inventors: Anna Lee Tonkovich, David J. Hesse, Sean P. Fitzgerald, Bin Yang, Ravi Arora, Laura J. Silva, G. Bradley Chadwell, Kai Jarosch, Dongming Qiu
  • Patent number: 8383054
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 26, 2013
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Patent number: 8252245
    Abstract: The invention provides methods, apparatus and systems in which there is partial boiling of a liquid in a mini-channel or microchannel. The partial boiling removes heat from an exothermic process.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: August 28, 2012
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, David J. Hesse, Sean P. Fitzgerald, Bin Yang, Ravi Arora, Laura J. Silva, G. Bradley Chadwell, Kai Jarosch, Dongming Qiu
  • Publication number: 20110300039
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Application
    Filed: April 25, 2011
    Publication date: December 8, 2011
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Patent number: 7931875
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: April 26, 2011
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Ravi Arora, Barry L. Yang, David J. Kuhlmann, Thomas D. Yuschak, John Arthur Monahan
  • Publication number: 20100300550
    Abstract: Provided is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation is enabled. In particular, the microchannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Application
    Filed: July 19, 2010
    Publication date: December 2, 2010
    Applicant: VELOCYS, INC.
    Inventors: James Allen Mathias, G. Bradley Chadwell, Dongming Qiu, Anna Lee Y.Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Patent number: 7780944
    Abstract: The invention is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The invention enables the combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation. In particular, the microchannel heat exchanger of the present invention enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: August 24, 2010
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, G. Bradley Chadwell, Dongming Qiu, Annalee Y. Tonkovich, Steven T. Perry, Matthew B. Schmidt, Sean P. Fitzgerald, David J. Hesse, Thomas D. Yuschak, Bin Yang
  • Patent number: 7754935
    Abstract: Methods of dehydrogenating hydrocarbons to yield unsaturated compounds are described. Reactor configurations useful for dehydrogenation are also described. Hydrocarbons can be dehydrogenated, for relatively long periods of time-on-stream, in a reaction chamber having a dimension of 2 mm or less to produce H2 and an olefin. Techniques have been developed that reduce coke and allow stable, relatively long-term operation in small reactors.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: July 13, 2010
    Assignee: Velocys
    Inventors: John H. Brophy, Gary Roberts, G. Bradley Chadwell, Matthew B. Schmidt, Anna Lee Tonkovich
  • Patent number: 7507274
    Abstract: The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: March 24, 2009
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Steven T. Perry, Ravi Arora, Dongming Qiu, Michael Jay Lamont, Deanna Burwell, Terence Andrew Dritz, Jeffrey S. McDaniel, William A. Rogers, Jr., Laura J. Silva, Daniel J. Weidert, Wayne W. Simmons, G. Bradley Chadwell
  • Publication number: 20090012341
    Abstract: Methods of dehydrogenating hydrocarbons to yield unsaturated compounds are described. Reactor configurations useful for dehydrogenation are also described. Hydrocarbons can dehydrogenationed, for relatively long periods of time-on-stream, in a reaction chamber having a dimension of 2 mm or less to produce H2 and an olefin. Techniques have been developed that reduce coke and allow stable, relatively long-term operation in small reactors.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 8, 2009
    Applicant: Velocys Inc.
    Inventors: John H. Brophy, Anna Lee Tonkovich, Gary Roberts, Matthew B. Schmidt, G. Bradley Chadwell
  • Patent number: 7405338
    Abstract: Methods of dehydrogenating hydrocarbons to yield unsaturated compounds are described. Reactor configurations useful for dehydrogenation are also described. Hydrocarbons can dehydrogenationed, for relatively long periods of time-on-stream, in a reaction chamber having a dimension of 2 mm or less to produce H2 and an olefin. Techniques have been developed that reduce coke and allow stable, relatively long-term operation in small reactors.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: July 29, 2008
    Assignee: Velocys
    Inventors: John H. Brophy, Anna Lee Tonkovich, Gary Roberts, Matthew B. Schmidt, G. Bradley Chadwell