Patents by Inventor G. Duensing

G. Duensing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070088211
    Abstract: The subject invention relates to a method and apparatus for producing stimulated MRI data. In an embodiment, a remote-controlled “smart phantom” can produce simulated data. The simulated data can be acquired from a MRI system. The subject device can generate control signals and send the generated control signals to secondary coils/probes placed in the subject smart phantom. The control signals determine the current flow in the secondary coils/probes, which act as local spin magnetization amplifiers and thus produce regions of variable contrast to noise ratio. The control signals can be generated with various parameters, such as BOLD models, different levels of contrast-to-noise ratio (CNR), signal intensities, and physiological signals. Comparisons can be made with the widely-used simulated data by computers. Validation of the subject smart phantom can be performed with both theoretical analysis and data of human subjects.
    Type: Application
    Filed: June 13, 2006
    Publication date: April 19, 2007
    Inventors: Hu Cheng, Qun Zhao, William Edelstein, G. Duensing
  • Publication number: 20070013375
    Abstract: The subject invention pertains to method and apparatus for parallel imaging. The subject method can be utilized with imaging systems utilizing parallel imaging techniques. In a specific embodiment, the subject invention can be used in magnetic resonance imaging (MRI). A specific embodiment of the subject invention can reduce parallel reconstruction CPU and system resources usage by reducing the number of channels employed in the parallel reconstruction from the M channel signals to a lower number of channel signals. In a specific embodiment, sensitivity map information can be used in the selection of the M channel signals to be used, and how the selected channel signals are to be combined, to create the output channel signals. In an embodiment, for a given set of radio-frequency (RF) elements, an optimal choice of reconstructed channel modes can be made using prior view information and/or sensitivity data for the given slice. The subject invention can utilize parallel imaging speed up in multiple directions.
    Type: Application
    Filed: May 8, 2006
    Publication date: January 18, 2007
    Inventors: James Akao, G. Duensing, Feng Huang
  • Publication number: 20060076955
    Abstract: The subject invention pertains to a technique and device that can isolate and separate resultant electromagnetic fields of volume coils at high frequency. In an embodiment, an RF shield can be used to isolate and separate resultant electromagnetic fields. In an embodiment, the shield can have a cylindrical shape that can form a partially closed volume in which an object to be imaged, or sample, can be inserted. In an embodiment, the RF shield can be part of a RF coil. In a specific embodiment, some parts of a volume coil can be inside a shield, and the other parts of a volume coil can be outside the shield. The shielding of some of the parts of a volume coil can create conductor patterns corresponding to the specific parts inside the shield and the specific parts outside the shield. In an embodiment, two or more conductor patterns can be placed in proximity to the same shield and either be driven independently, driven together, or act as receiving elements, combined or uncombined.
    Type: Application
    Filed: October 7, 2005
    Publication date: April 13, 2006
    Inventors: Charles Saylor, G. Duensing
  • Publication number: 20060055405
    Abstract: The subject invention pertains to a method and apparatus for enhanced multiple coil imaging. The subject invention is advantageous for use in imaging devices, such as MRIs where multiple images can be combined to form a single composite image. In one specific embodiment, the subject method and apparatus utilize a novel process of converting from the original signal vector in the time domain to allow the subject invention to be installed in-line with current MRI devices.
    Type: Application
    Filed: November 8, 2005
    Publication date: March 16, 2006
    Inventors: G. Duensing, Steve Varosi, Scott King
  • Publication number: 20050253580
    Abstract: The subject invention pertains to a method for magnetic resonance imaging (MRI) involving the acquisition of pseudo-polar K-space data and creation of an MRI image from the pseudo-polar K-space data. In an embodiment, the subject method can incorporate a scan scheme for acquiring pseudo-polar K-space data and corresponding reconstruction technique. Advantageously, the subject method can result in reduced motion artifact in dynamic MRI with short acquisition time and short reconstruction time. In a specific embodiment, the subject method can incorporate a reconstruction method utilizing Fractional FFT in MRI. The subject method can allow the acquisition of pseudo-polar K-space data. In a specific embodiment, the acquisition of the pseudo-polar is accomplished by one shot. Other acquisition techniques can also be utilized in accordance with the subject invention.
    Type: Application
    Filed: May 13, 2005
    Publication date: November 17, 2005
    Inventors: Feng Huang, Hu Cheng, G. Duensing
  • Publication number: 20050194975
    Abstract: The subject invention pertains to methods and apparatus for producing excitation for magnetic resonance imaging (MRI) from a plurality of local exciting elements such that each local exciting element's excitation is independent of the other local exciting elements' excitation. The methods and apparatus of the subject invention can be utilized in magnetic resonance imaging (MRI) and in magnetic resonance spectroscopy (MRS), where MRI produces a magnitude for each pixel that combines many frequency components, typically for magnitude images, and MRS produces a spectrum of outputs over a range of frequencies for each pixel, typically a spectral output. The subject method and apparatus can be utilized for exciting proton, and/or other imaging materials relating to spin magnetization, such as, but not limited to, phosphorous, carbon, and fluorine.
    Type: Application
    Filed: March 7, 2005
    Publication date: September 8, 2005
    Inventor: G. Duensing
  • Publication number: 20050110490
    Abstract: The subject invention relates to a method and apparatus for producing stimulated MRI data. In an embodiment, a remote-controlled “smart phantom” can produce simulated data. The simulated data can be acquired from a MRI system. The subject device can generate control signals and send the generated control signals to secondary coils/probes placed in the subject smart phantom. The control signals determine the current flow in the secondary coils/probes, which act as local spin magnetization amplifiers and thus produce regions of variable contrast to noise ratio. The control signals can be generated with various parameters, such as BOLD models, different levels of contrast-to-noise ratio (CNR), signal intensities, and physiological signals. Comparisons can be made with the widely-used simulated data by computers. Validation of the subject smart phantom can be performed with both theoretical analysis and data of human subjects.
    Type: Application
    Filed: October 4, 2004
    Publication date: May 26, 2005
    Inventors: Qun Zhao, G. Duensing, Hu Cheng, William Edelstein