Patents by Inventor G. Jeffrey Snyder

G. Jeffrey Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9316545
    Abstract: A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 19, 2016
    Assignee: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Shiho Iwanaga
  • Patent number: 9147822
    Abstract: The present invention discloses heavily doped PbSe with high thermoelectric performance. Thermoelectric property measurements disclosed herein indicated that PbSe is high zT material for mid-to-high temperature thermoelectric applications. At 850 K a peak zT>1.3 was observed when nH˜1.0×1020 cm?3. The present invention also discloses that a number of strategies used to improve zT of PbTe, such as alloying with other elements, nanostructuring and band modification may also be used to further improve zT in PbSe.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: September 29, 2015
    Assignee: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Heng Wang, Yanzhong Pei
  • Patent number: 9140612
    Abstract: A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 22, 2015
    Assignee: California Institute of Technology
    Inventor: G. Jeffrey Snyder
  • Patent number: 9059364
    Abstract: The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: June 16, 2015
    Assignee: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Yanzhong Pei
  • Publication number: 20140373889
    Abstract: Disclosed herein are thermoelectric materials with high performance characteristics, and methods of use thereof Among the thermoelectric materials disclosed are those of the formula (Bi1?xSbx)2Te3. In some embodiments, the invention teaches that 0.5?x?0.9. In some embodiments, the invention further teaches doping with iodine (I), in order to decrease the hole carrier concentration of (Bi1?xSbx)2Te3 mixed crystal and improve zT.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Applicant: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Hyun-sik Kim
  • Patent number: 8912425
    Abstract: The inventors demonstrate herein that homogeneous Ag-doped PbTe/Ag2Te composites exhibit high thermoelectric performance (˜50% over La-doped composites) associated with an inherent temperature induced gradient in the doping concentration caused by the temperature-dependent solubility of Ag in the PbTe matrix. This method provides a new mechanism to achieve a higher thermoelectric efficiency afforded by a given material system, and is generally applicable to other thermoelectric materials.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 16, 2014
    Assignee: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Yanzhong Pei
  • Patent number: 8889028
    Abstract: The present invention demonstrates that weak scattering of carriers leads to a high mobility and therefore helps achieve low electric resistivity with high Seebeck coefficient for a thermoelectric material. The inventors demonstrate this effect by obtaining a thermoelectric figure of merit, zT, higher than 1.3 at high temperatures in n-type PbSe, because of the weak scattering of carriers in the conduction band as compared with that in the valence band. The invention further demonstrates favorable thermoelectric transport properties of n-type PbTe1-xIx with carrier concentrations ranging from 5.8×1018-1.4×1020 cm?3.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: November 18, 2014
    Assignee: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Aaron LaLonde, Yanzhong Pei, Heng Wang
  • Patent number: 8801953
    Abstract: The inventors demonstrate herein that various Zintl compounds can be useful as thermoelectric materials for a variety of applications. Specifically, the utility of Ca3AlSb3, Ca5Al2Sb6, Ca5In2Sb6, Ca5Ga2Sb6, is described herein. Carrier concentration control via doping has also been demonstrated, resulting in considerably improved thermoelectric performance in the various systems described herein.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: August 12, 2014
    Assignee: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Eric Toberer, Alex Zevalkink
  • Patent number: 8728340
    Abstract: The method of manufacturing the thermoelectric material including a plurality of phases that are phase-separated from a supersaturated solid solution includes: a process of performing a mechanical alloying treatment to a starting raw material that is prepared with a composition deviated from a composition range existing in an equilibrium state of a compound to generate the supersaturated solid solution; and a process of performing phase separation into the plurality of phases and solidification by heating and pressing the supersaturated solid solution, or by further performing a heat treatment according to the circumstances.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: May 20, 2014
    Assignees: Japan Science and Technology Agency, California Institute of Technology
    Inventors: Teruyuki Ikeda, G. Jeffrey Snyder
  • Publication number: 20140027681
    Abstract: The present invention demonstrates that weak scattering of carriers leads to a high mobility and therefore helps achieve low electric resistivity with high Seebeck coefficient for a thermoelectric material. The inventors demonstrate this effect by obtaining a thermoelectric figure of merit, zT, higher than 1.3 at high temperatures in n-type PbSe, because of the weak scattering of carriers in the conduction band as compared with that in the valence band. The invention further demonstrates favorable thermoelectric transport properties of n-type PbTe1-xIx with carrier concentrations ranging from 5.8×1018-1.4×1020 cm?3.
    Type: Application
    Filed: May 3, 2012
    Publication date: January 30, 2014
    Applicant: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Aaron LaLonde, Yanzhong Pei, Heng Wang
  • Patent number: 8614392
    Abstract: A micro-combustion power system is disclosed. The invention is comprised of a housing that further comprises two flow path volumes, each having generally opposing flow path directions and each generally having opposing configurations. Each flow path volume comprises a pre-heating volume having at least one pre-heating heat exchange structure. Each flow path volume further comprises a combustion volume having a combustion means or structure such as a catalytic material disposed therein Further, each flow path volume comprise a post-combustion volume having at least one post-combustion heat exchange structure. One or more thermoelectric generator means is in thermal communication with at least one of the combustion volumes whereby thermal energy generated by an air/fuel catalytic reaction in the combustion volume is transferred to the thermoelectric generator to convert same to electrical energy for use by an external circuit.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: December 24, 2013
    Inventors: Ying Hsu, Itzhak Sapir, Paul Ronney, G. Jeffrey Snyder
  • Publication number: 20130180561
    Abstract: Disclosed herein include nanocomposites with improved thermoelectric performance. Also disclosed herein include methods of manufacturing and methods of using such nanocomposites.
    Type: Application
    Filed: January 28, 2011
    Publication date: July 18, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: G. Jeffrey Snyder, Yanzhong Pei
  • Publication number: 20130153811
    Abstract: The method of manufacturing the thermoelectric material including a plurality of phases that are phase-separated from a supersaturated solid solution includes: a process of performing a mechanical alloying treatment to a starting raw material that is prepared with a composition deviated from a composition range existing in an equilibrium state of a compound to generate the supersaturated solid solution; and a process of performing phase separation into the plurality of phases and solidification by heating and pressing the supersaturated solid solution, or by further performing a heat treatment according to the circumstances.
    Type: Application
    Filed: March 27, 2012
    Publication date: June 20, 2013
    Inventors: Teruyuki IKEDA, G. Jeffrey SNYDER
  • Publication number: 20130074898
    Abstract: Thermoelectric cooling systems are disclosed that utilize the Thomson effect. The disclosed systems can be used, for example, in cryogenic applications. In one aspect, a system is provided for thermoelectric cooling. The system comprises a pair of semiconductor elements, a cold plate and a hot plate. The pair of semiconductor elements comprises a P-type semiconductor element having a first carrier concentration and an N-type semiconductor element having a second carrier concentration. The first carrier concentration is functionally graded over the P-type semiconductor element and the second carrier concentration is functionally graded over the N-type semiconductor element. Each semiconductor element has a cold end and a hot end. The cold plate is thermally coupled to the cold ends of the P-type semiconductor elements and the N-type semiconductor element. The hot plate is thermally coupled to the hot ends of the P-type semiconductor element and the N-type semiconductor element.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 28, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: G. Jeffrey Snyder
  • Publication number: 20130044788
    Abstract: A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.
    Type: Application
    Filed: July 11, 2012
    Publication date: February 21, 2013
    Applicant: California Institute of Technology
    Inventor: G. JEFFREY SNYDER
  • Publication number: 20120213250
    Abstract: A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 23, 2012
    Applicant: California Institute of Technology
    Inventor: G. Jeffrey Snyder
  • Publication number: 20120138870
    Abstract: The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.
    Type: Application
    Filed: November 2, 2011
    Publication date: June 7, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: G. Jeffrey Snyder, Yanzhong Pei
  • Publication number: 20120098162
    Abstract: A rapid hot press (RHP) method and system in which heat is supplied by RF induction to rapidly consolidate a material is described. Use of RF induction heating enables rapid heating and consolidation of powdered materials over a wide temperature range. Details of an exemplary system, instrumentation and performance using a thermoelectric material as an example are disclosed. The novel technique may be applied to any known sinterable materials. Notable applicable materials include thermoelectric materials, such as PbTe. An exemplary thermoelectric PbTe material may be pressed at an optimized temperature and time according to the technique to be consolidated under typical parameters and yield suitable properties of Seebeck coefficient, electrical resistivity, and thermal diffusivity.
    Type: Application
    Filed: October 26, 2011
    Publication date: April 26, 2012
    Applicant: California Institute of Technology
    Inventors: G. Jeffrey Snyder, Aaron LaLonde, Teruyuki Ikeda
  • Publication number: 20120097906
    Abstract: The present invention discloses heavily doped PbSe with high thermoelectric performance. Thermoelectric property measurements disclosed herein indicated that PbSe is high zT material for mid-to-high temperature thermoelectric applications. At 850 K a peak zT>1.3 was observed when nH˜1.0×1020 cm?3. The present invention also discloses that a number of strategies used to improve zT of PbTe, such as alloying with other elements, nanostructuring and band modification may also be used to further improve zT in PbSe.
    Type: Application
    Filed: October 26, 2011
    Publication date: April 26, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: G. Jeffrey Snyder, Heng Wang, Yanzhong Pei
  • Publication number: 20120090656
    Abstract: The inventors demonstrate herein that homogeneous Ag-doped PbTe/Ag2Te composites exhibit high thermoelectric performance (˜50% over La-doped composites) associated with an inherent temperature induced gradient in the doping concentration caused by the temperature-dependent solubility of Ag in the PbTe matrix. This method provides a new mechanism to achieve a higher thermoelectric efficiency afforded by a given material system, and is generally applicable to other thermoelectric materials.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 19, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: G. Jeffrey Snyder, Yanzhong Pei