Patents by Inventor Günter Schallmoser

Günter Schallmoser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134183
    Abstract: An actuator-sensor system for controlled diverting or deflecting of electromagnetic radiation in at least one axis (9), with an actuator (5) for mechanically moving a deflecting element (10) and with a measuring element (2) for sensing the position of the deflecting element (10), where the measuring element (2) includes a flat substrate (3) having at least one sensor element (4). Furthermore, the present disclosure relates to a fast steering mirror (FSM).
    Type: Application
    Filed: February 22, 2022
    Publication date: April 25, 2024
    Inventors: Harald HAAS, Reinhold HOENICKA, Tobias SCHOPF, Guenter SCHALLMOSER
  • Publication number: 20230188009
    Abstract: A sensor system having a distance sensor (1) for detecting the distance between two objects (3,4) that can be moved relative to one another and having a magnetic field sensor (2) for detecting a magnetic field between the objects (3,4), in particular for detecting a gap width and a magnetic field between a rotor and a stator, and having a selection device (13), wherein a measurement signal from the distance sensor (1) or a measurement signal from the magnetic field sensor (2) can be supplied for further processing via the selection device (13). Furthermore, a method for operating a sensor system is described.
    Type: Application
    Filed: June 22, 2021
    Publication date: June 15, 2023
    Inventors: Michael KURAN, Norbert REINDL, Thomas HASLINGER, Thomas WISSPEINTNER, Guenter SCHALLMOSER
  • Patent number: 10890435
    Abstract: A device is disclosed for measuring the geometry of the inner wall of bores, drill holes and passages, which are optionally countersunk, and in particular for threaded, pin, and rivet connections of workpieces, said device comprising at least one optical sensor measuring towards the inner wall and capable of being introduced into the drill hole and rotated via a feed/rotating unit, wherein an auxiliary object is provided with a passage and rests on the surface of the workpiece, through which passage said sensor is inserted into the countersink and/or bore. The device is characterized in that the inner wall of the auxiliary object is provided with a structure and that the sensor scans said structure(s) while passing through the auxiliary object. The disclosure also relates to a corresponding method.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: January 12, 2021
    Assignee: MICRO-EPSILON MESSTECHNIK GMBH & CO. KG
    Inventors: Juergen Haas, Alexander Streicher, Bernhard Jochum, Guenter Schallmoser
  • Publication number: 20190271536
    Abstract: The invention relates to a device for measuring the geometry of the inner wall of bores, drill holes and passages, which are optionally countersunk, and in particular for threaded, pin, and rivet connections of workpieces, said device comprising at least one optical sensor measuring towards the inner wall and capable of being introduced into the drill hole and rotated via a feed/rotating unit, wherein an auxiliary object is provided with a passage and rests on the surface of the workpiece, through which passage said sensor is inserted into the countersink and/or bore. The device is characterized in that the inner wall of the auxiliary object is provided with a structure and that the sensor scans said structure(s) while passing through the auxiliary object. The invention also relates to a corresponding method.
    Type: Application
    Filed: September 14, 2016
    Publication date: September 5, 2019
    Inventors: Juergen HAAS, Alexander STREICHER, Bernhard JOCHUM, Guenter SCHALLMOSER
  • Patent number: 10234274
    Abstract: A method for measuring the thickness on measurement objects, whereby at least one sensor measures against the object from the top and at least one other sensor measures against the object from the bottom and, at a known distance of the sensors to one another, the thickness of the object is calculated according to the formula D=Gap?(S1+S2), whereby D=the thickness of the measurement object, Gap=the distance between the sensors, S1=the distance of the top sensor to the upper side of the measurement object, and S2=the distance of the bottom sensor to the underside of the measurement object, is characterized by the compensation of a measurement error caused by tilting of the measurement object and/or by displacement of the sensors and/or by tilting of the sensors, whereby the displacement and/or the tilting is determined by calibration and the calculated thickness or the calculated thickness profile is corrected accordingly. The invention further concerns a device for applying the method.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: March 19, 2019
    Assignee: MICRO-EPSILON Messtechnik GmbH & Co. KG
    Inventors: Herbert Fuellmeier, Guenter Schallmoser
  • Patent number: 10060762
    Abstract: The invention relates to a sensor element for an inductive sensor used for a displacement or distance measurement by means of a magnetic field that varies according to the distance from the measurement object but that remains temporally constant. In said sensor, thin ferromagnetic material is integrated into a substrate. The invention also relates to a sensor comprising said sensor element and to a method for producing the sensor element.
    Type: Grant
    Filed: July 4, 2014
    Date of Patent: August 28, 2018
    Assignee: MICRO-EPSILON Messtechnik GmbH & Co. KG
    Inventors: Christian Pfaffinger, Werner Groemmer, Karl Wisspeintner, Guenter Schallmoser, Thomas Wisspeintner
  • Patent number: 9574865
    Abstract: A method for detecting magnetic fields, particularly for detecting the position of objects with a preferably oblong, soft-magnetic element, which is connected to electronics, with via the electronics the impedance of the soft-magnetic material is measured, characterized in that a magnetic field is used in which by the position of an object which is located in an arrangement with the soft-magnetic material the magnetic field develops at the location of the soft-magnetic material, with the magnetic permeability ? of the soft-magnetic material adjusting, depending on the magnetic field and thus the position of the object. A respective device serves for applying the method according to the invention.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: February 21, 2017
    Assignee: MICRO-EPSILON Messtechnik GmbH & Co. KG
    Inventors: Christian Pfaffinger, Johann Hofer, Felix Mednikov, Thomas Wisspeintner, Guenter Schallmoser
  • Publication number: 20160252343
    Abstract: A method for measuring the thickness on measurement objects, whereby at least one sensor measures against the object from the top and at least one other sensor measures against the object from the bottom and, at a known distance of the sensors to one another, the thickness of the object is calculated according to the formula D=Gap?(S1+S2), whereby D=the thickness of the measurement object, Gap=the distance between the sensors, S1=the distance of the top sensor to the upper side of the measurement object, and S2=the distance of the bottom sensor to the underside of the measurement object, is characterized by the compensation of a measurement error caused by tilting of the measurement object and/or by displacement of the sensors and/or by tilting of the sensors, whereby the displacement and/or the tilting is determined by calibration and the calculated thickness or the calculated thickness profile is corrected accordingly. The invention further concerns a device for applying the method.
    Type: Application
    Filed: August 28, 2014
    Publication date: September 1, 2016
    Inventors: Herbert Fuellmeier, Guenter Schallmoser
  • Publication number: 20160209240
    Abstract: The invention relates to a sensor element for an inductive sensor used for a displacement or distance measurement by means of a magnetic field that varies according to the distance from the measurement object but that remains temporally constant. In said sensor, thin ferromagnetic material is integrated into a substrate. The invention also relates to a sensor comprising said sensor element and to a method for producing the sensor element.
    Type: Application
    Filed: July 4, 2014
    Publication date: July 21, 2016
    Inventors: Christian Pfaffinger, Werner Groemmer, Karl Wisspeintner, Guenter Schallmoser, Thomas Wisspeintner
  • Patent number: 8554503
    Abstract: A method for calibration of a thickness gauge is provided in which the thickness gauge measures the thickness of a measured object in a stipulated measurement direction with at least one displacement sensor, operating contactless or by scanning, a reference object with known thickness and shape being brought into at least one partial area of the measurement field of the at least one displacement sensor.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: October 8, 2013
    Assignee: Micro-Epsilon Messetechnik GmbH
    Inventors: Günter Schallmoser, Karl Wisspeintner, Robert Wagner
  • Publication number: 20130141081
    Abstract: A method for detecting magnetic fields, particularly for detecting the position of objects with a preferably oblong, soft-magnetic element, which is connected to electronics, with via the electronics the impedance of the soft-magnetic material is measured, characterized in that a magnetic field is used in which by the position of an object which is located in an arrangement with the soft-magnetic material the magnetic field develops at the location of the soft-magnetic material, with the magnetic permeability ? of the soft-magnetic material adjusting, depending on the magnetic field and thus the position of the object. A respective device serves for applying the method according to the invention.
    Type: Application
    Filed: August 12, 2011
    Publication date: June 6, 2013
    Applicant: Micro-Epsilon Messtechnik GMBH & CO. KG
    Inventors: Christian Pfaffinger, Johann Hofer, Felix Mednikov, Thomas Wisspeintner, Guenter Schallmoser
  • Publication number: 20120299585
    Abstract: An inductively operating sensor, particularly for measuring distances and positions of a metallic object, comprising at least a coil, a ferromagnetic or ferritic core and perhaps a housing comprising a sensor element, with the core being embedded in a single or multi-layered ceramic and jointly with the ceramic forming a coil body and with the coil body and the core being connected to each other in a form-fitting fashion. Furthermore, a method is suggested for producing such a sensor.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 29, 2012
    Applicant: MICRO-EPSILON MESSTECHNIK GMBH & CO. KG
    Inventors: Reinhold Hoenicka, Sabine Schmideder, Günter Schallmoser
  • Publication number: 20110125442
    Abstract: A method for calibrating a thickness gauge, wherein the thickness gauge measures the thickness of a measurement object in a predefinable measuring direction (Z), comprising at least one displacement sensor (1, 2) operating in a contactless or scanning manner, wherein a reference object (3) having a known thickness and shape is moved into at least a partial region of the measurement field of the at least one displacement sensor (1, 2), comprises the following steps with respect to particularly precise and simple calibration. First, at least two independent measurement values are recorded by the at least one displacement sensor (1, 2) in at least two predefinable sites on a first surface of the reference object (3) at predefinable times tj, or as a function of predefinable positions pj of the reference object (3) in the measurement field, where j=1, 2 . . . .
    Type: Application
    Filed: April 21, 2009
    Publication date: May 26, 2011
    Inventors: Günter Schallmoser, Karl Wisspeintner, Robert Wagner
  • Patent number: 7592804
    Abstract: The invention relates to a contactlessly working eddy current sensor, particularly for detecting essentially flat test objects, comprising at least one sensor coil, eddy currents being able to be induced in the test object. The invention is characterized in that the coil, when passing by the test object, is aligned in such a manner that the coil axis is oriented essentially parallel to a line normal to a surface to the test object, and that the test object can be moved past the sensor coil essentially parallel to the coil axis or the sensor coil can be moved past the test object. A corresponding method is carried out so that an eddy current can occur only once when the test object or coil is passed by.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 22, 2009
    Assignee: Micro-Epsilon Messtechnick GmbH & Co. KG
    Inventors: Franz Hrubes, Günter Schallmoser
  • Patent number: 6762922
    Abstract: A device and a method for detecting the position of an object (1), such as an armature (2) of an inlet or outlet valve (3), with the device comprising at least two coils (4, 5), preferably two magnet coils, which can be energized for moving the object (1) between the two coils (4, 5), or used with an evaluation circuit for detecting the position of the object (1). The two coils (4, 5) are alternately used for moving the object (1) between the coils (4, 5) and for detecting the position of the object (1).
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: July 13, 2004
    Assignee: Micro-Epsilon Messtechnik GmbH & Co. KG
    Inventors: Felix Mednikov, Stanislav Mednikov, Mark Netschaewsky, Günter Schallmoser