Patents by Inventor G. Wayne Moore

G. Wayne Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9983175
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: May 29, 2018
    Assignee: General Electric Company
    Inventors: James Ginther, John Timms, G. Wayne Moore, James Gessert
  • Publication number: 20170219535
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 3, 2017
    Inventors: James Ginther, John Timms, G. Wayne Moore, James Gessert
  • Patent number: 9696356
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 4, 2017
    Assignee: General Electric Company
    Inventors: James Ginther, John Timms, G. Wayne Moore, James Gessert
  • Patent number: 9513327
    Abstract: Devices and methods for testing the operation of acoustic devices such as ultrasonic probes. The disclosed devices and methods identify failures of individual piezoelectric elements of various types of ultrasonic probes free of family-specific adapters to interface with such probes and free of acoustic coupling fluids or the like to establish acoustic coupling with the probes. In one arrangement, a testing appliance is disclosed that includes a testing unit and first and second probes electrically connected thereto. After an operator has established electrical connections between the first probe and a first contact of a connector assembly of the acoustic probe and between the second probe and a ground return path of the connector assembly, the testing device may pass a current through an electric circuit between the first and second probes and determine one or more corresponding electrical quantities of the circuit for establishing statuses of the probe.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: December 6, 2016
    Assignee: Acertara Acoustic Laboratories LLC
    Inventors: James Gessert, G. Wayne Moore
  • Publication number: 20160320439
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Inventors: James Ginther, John Timms, G. Wayne Moore, James Gessert
  • Patent number: 9392387
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: July 12, 2016
    Assignee: General Electric Company
    Inventors: James Ginther, John Timms, G. Wayne Moore, James Gessert
  • Patent number: 9375201
    Abstract: A medical imaging device that uses electromagnetic or acoustic information to generate a patient image is remotely maintained. A set of operational characteristics for the device is maintained by a maintenance system disposed remotely from the device. Data from sensors disposed local to the device are received over a network at the maintenance system. A set of parameter measures is derived from the received data and analyzed in comparison with the set of operational characteristics to identify a predicted malfunction of a component of the device. The maintenance system is thus able to initiate a repair of the medical imaging device by generating an alert in response to identification of the predicted malfunction.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: June 28, 2016
    Assignee: CONSENSYS IMAGING SERVICE, INC.
    Inventors: Michael J. Mercer, G. Wayne Moore, James Gessert
  • Publication number: 20160018460
    Abstract: Devices and methods for testing the operation of acoustic devices such as ultrasonic probes. The disclosed devices and methods identify failures of individual piezoelectric elements of various types of ultrasonic probes free of family-specific adapters to interface with such probes and free of acoustic coupling fluids or the like to establish acoustic coupling with the probes. In one arrangement, a testing appliance is disclosed that includes a testing unit and first and second probes electrically connected thereto. After an operator has established electrical connections between the first probe and a first contact of a connector assembly of the acoustic probe and between the second probe and a ground return path of the connector assembly, the testing device may pass a current through an electric circuit between the first and second probes and determine one or more corresponding electrical quantities of the circuit for establishing statuses of the probe.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 21, 2016
    Inventors: James Gessert, G. Wayne Moore
  • Publication number: 20150201912
    Abstract: A medical imaging device that uses electromagnetic or acoustic information to generate a patient image is remotely maintained. A set of operational characteristics for the device is maintained by a maintenance system disposed remotely from the device. Data from sensors disposed local to the device are received over a network at the maintenance system. A set of parameter measures is derived from the received data and analyzed in comparison with the set of operational characteristics to identify a predicted malfunction of a component of the device. The maintenance system is thus able to initiate a repair of the medical imaging device by generating an alert in response to identification of the predicted malfunction.
    Type: Application
    Filed: November 24, 2014
    Publication date: July 23, 2015
    Inventors: Michael J. Mercer, G. Wayne Moore, James Gessert
  • Publication number: 20150008942
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 8, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: JAMES GINTHER, JOHN TIMMS, G. WAYNE MOORE, JAMES GESSERT
  • Patent number: 8896439
    Abstract: A medical imaging device that uses electromagnetic or acoustic information to generate a patient image is remotely maintained. A set of operational characteristics for the device is maintained by a maintenance system disposed remotely from the device. Data from sensors disposed local to the device are received over a network at the maintenance system. A set of parameter measures is derived from the received data and analyzed in comparison with the set of operational characteristics to identify a predicted malfunction of a component of the device. The maintenance system is thus able to initiate a repair of the medical imaging device by generating an alert in response to identification of the predicted malfunction.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 25, 2014
    Assignee: Consensys Imaging Service, Inc.
    Inventors: Michael J. Mercer, G. Wayne Moore, James Gessert
  • Patent number: 8893541
    Abstract: Appliances and methods are disclosed for testing operation of an acoustic device that generates beams of acoustic energy. An imaging array generates electrical signals in response to impinging receipt of acoustic energy. An acoustic-energy direction system is disposed to focus acoustic energy onto the imaging array. A controller is electrically coupled with the acoustic device and with the imaging array. The controller has instructions to generate an image on a display from electrical signals received by the controller from the imaging array. The electrical signals are received by the controller in response to generation of a beam of acoustic energy by the acoustic device. The beam of acoustic energy is directed towards the acoustic-energy direction system. The image provides a representation of the generated beam of acoustic energy.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 25, 2014
    Assignee: Acertara Acoustic Laboratories LLC
    Inventors: James Gessert, G. Wayne Moore
  • Patent number: 8803532
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: August 12, 2014
    Assignee: General Electric Company
    Inventors: James Ginther, John Timms, G. Wayne Moore, James Gessert
  • Publication number: 20140020469
    Abstract: Appliances and methods are disclosed for testing operation of an acoustic device that generates beams of acoustic energy. An imaging array generates electrical signals in response to impinging receipt of acoustic energy. An acoustic-energy direction system is disposed to focus acoustic energy onto the imaging array. A controller is electrically coupled with the acoustic device and with the imaging array. The controller has instructions to generate an image on a display from electrical signals received by the controller from the imaging array. The electrical signals are received by the controller in response to generation of a beam of acoustic energy by the acoustic device. The beam of acoustic energy is directed towards the acoustic-energy direction system. The image provides a representation of the generated beam of acoustic energy.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 23, 2014
    Applicant: ACERTARA ACOUSTIC LABORATORIES LLC
    Inventors: James Gessert, G. Wayne Moore
  • Publication number: 20120256646
    Abstract: Methods and devices are disclosed for testing an acoustic probe having transducing elements for converting between acoustic and electrical signals. An electrical signal is generated at a frequency with a testing device capable of generating electrical signals over a range of frequencies. The electrical signal is transmitted to at least some of the transducing elements to measure a complex impedance and thereby evaluate a performance of the transducing elements.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Applicant: UNISYN MEDICAL TECHNOLOGIES, INC.
    Inventors: James Ginther, John Timms, G. Wayne Moore, James Gessert
  • Patent number: 8169853
    Abstract: Embodiments of the invention provide systems and methods for testing acoustic systems. According to one embodiment, a method for testing an acoustic system can comprise receiving a signal from the acoustic system at a testing device coupled with the acoustic system via one of a plurality of channels between the acoustic system and the testing device. The signal can include a pattern of pulses including Doppler pulses. At least one Doppler pulse from the pattern pulses of the signal can be detected with the testing device. A response to the signal from the acoustic system can be provided by generating an echo pulse with the testing device based on the detected at least one Doppler pulse wherein the echo pulse is frequency shifted from the detected at least one Doppler pulse and mimics a response to the detected at least one Doppler pulse for a selected acoustic probe.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 1, 2012
    Assignee: Unisyn Medical Technologies, Inc.
    Inventors: G. Wayne Moore, James M. Gessert, John G. Timms, Matthew Fitzgibbons
  • Patent number: 8164976
    Abstract: Embodiments of the invention provide for testing acoustic systems. According to one embodiment, testing an acoustic system can comprise receiving a signal from the acoustic system at a testing device via one of a plurality of channels between the acoustic system and the testing device. At least one pulse from a pattern pulses of the signal can be detected with the testing device by matching the pattern of pulses to an expected pulse pattern for the acoustic system. For example, matching the pattern of pulses to an expected pulse pattern can comprise determining whether the pulse pattern includes a first pulse type. If the pulse pattern includes the first pulse type, a determination can be made whether the pulse pattern further includes a second pulse type. If the pulse pattern further includes the second pulse type, a subsequent pulse of the second pulse type can be identified and detected.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: April 24, 2012
    Assignee: Unisyn Medical Technologies, Inc.
    Inventors: G. Wayne Moore, James M. Gessert, John G. Timms, Matthew Fitzgibbons
  • Patent number: 8159900
    Abstract: Embodiments of the invention provide systems and methods for testing acoustic systems. According to one embodiment, a method for testing an acoustic system can comprise receiving a signal from the acoustic system at a testing device coupled with the acoustic system via one of a plurality of channels between the acoustic system and the testing device. The signal can include a pattern of pulses. At least one pulse from the pattern of pulses of the signal can be detected with the testing device. A response to the signal from the acoustic system can be provided by generating an echo pulse with the testing device based on the detected at least one pulse. The echo pulse can mimic a response to the detected at least one pulse for a selected acoustic probe.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: April 17, 2012
    Assignee: Unisyn Medical Technologies, Inc.
    Inventors: G. Wayne Moore, James M. Gessert, John G. Timms, Matthew Fitzgibbons
  • Publication number: 20110121969
    Abstract: A medical imaging device that uses electromagnetic or acoustic information to generate a patient image is remotely maintained. A set of operational characteristics for the device is maintained by a maintenance system disposed remotely from the device. Data from sensors disposed local to the device are received over a network at the maintenance system. A set of parameter measures is derived from the received data and analyzed in comparison with the set of operational characteristics to identify a predicted malfunction of a component of the device. The maintenance system is thus able to initiate a repair of the medical imaging device by generating an alert in response to identification of the predicted malfunction.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: UNISYN MEDICAL TECHNOLOGIES, INC.
    Inventors: Michael J. Mercer, G. Wayne Moore, James Gessert
  • Patent number: D662843
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: July 3, 2012
    Assignee: Unisyn Medical Technologies
    Inventors: James Ginther, John Timms, Steven Emil Dananay, G. Wayne Moore