Patents by Inventor Gabriel A. Matus

Gabriel A. Matus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210194450
    Abstract: A resonator comprising a piezoelectric film which creates an acoustic path that is slightly longer in a central region of the resonator than at an edge of the resonator.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Inventors: David Woolsey, Gabriel A. Matus
  • Patent number: 10944372
    Abstract: A resonator comprising a piezoelectric film which creates an acoustic path that is slightly longer in a central region of the resonator than at an edge of the resonator.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: March 9, 2021
    Inventors: David Woolsey, Gabriel A. Matus
  • Patent number: 9514931
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 6, 2016
    Assignee: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20160322554
    Abstract: A thermoelectric device and methods thereof. The thermoelectric device includes nanowires, a contact layer, and a shunt. Each of the nanowires includes a first end and a second end. The contact layer electrically couples the nanowires through at least the first end of each of the nanowires. The shunt is electrically coupled to the contact layer. All of the nanowires are substantially parallel to each other. A first contact resistivity between the first end and the contact layer ranges from 10?13 ?-m2 to 10?7 ?-m2. A first work function between the first end and the contact layer is less than 0.8 electron volts. The contact layer is associated with a first thermal resistance ranging from 10?2 K/W to 1010 K/W.
    Type: Application
    Filed: April 1, 2016
    Publication date: November 3, 2016
    Inventors: Matthew L. Scullin, Madhav A. Karri, Adam Lorimer, Sylvain Muckenhirn, Gabriel A. Matus, Justin Tynes Kardel, Barbara Wacker
  • Patent number: 9242855
    Abstract: Structure including nano-ribbons and method thereof. The structure include multiple nano-ribbons. Each of the multiple nano-ribbons corresponds to a first end and a second end, and the first end and the second end are separated by a first distance of at least 100 ?m. Each of the multiple nano-ribbons corresponds to a cross-sectional area associated with a ribbon thickness, and the ribbon thickness ranges from 5 nm to 500 nm. Each of the multiple nano-ribbons is separated from at least another nano-ribbon selected from the multiple nano-ribbons by a second distance ranging from 5 nm to 500 nm.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: January 26, 2016
    Assignee: Alphabet Energy, Inc.
    Inventors: Gabriel A. Matus, Matthew L. Scullin
  • Patent number: 9051175
    Abstract: Structure including nano-ribbons and method thereof. The structure include multiple nano-ribbons. Each of the multiple nano-ribbons corresponds to a first end and a second end, and the first end and the second end are separated by a first distance of at least 100 ?m. Each of the multiple nano-ribbons corresponds to a cross-sectional area associated with a ribbon thickness, and the ribbon thickness ranges from 5 nm to 500 nm. Each of the multiple nano-ribbons is separated from at least another nano-ribbon selected from the multiple nano-ribbons by a second distance ranging from 5 nm to 500 nm.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 9, 2015
    Assignee: Alphabet Energy, Inc.
    Inventors: Gabriel A. Matus, Matthew L. Scullin
  • Publication number: 20140193982
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Patent number: 8736011
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 27, 2014
    Assignee: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20130086063
    Abstract: Analyzing digital content associated with a entity to identifier the entity's interest and influence related thereto. A set of digital content, such as text, pictures, or video, which the entity has submitted to one or more social media services, is identified. A set of interests for the entity is identified. This may be performed, in part, by analyzing a set of pictures to identify a set of visual attributes for each picture. Then, one or more descriptive labels that characterize the content shown in each picture are determined based on the set of visual attributes for each picture. Next, one or more subject categories for each picture are determined based upon the one or more descriptive labels for each picture. Thereafter, a set of actual interests for the entity is identified based, at least in part, upon the one or more subject categories associated with each digital picture.
    Type: Application
    Filed: August 31, 2012
    Publication date: April 4, 2013
    Inventors: Trista P. Chen, Gabriel A. Matus
  • Publication number: 20120319082
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Application
    Filed: December 1, 2011
    Publication date: December 20, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20120247527
    Abstract: A thermoelectric device and methods thereof. The thermoelectric device includes nanowires, a contact layer, and a shunt. Each of the nanowires includes a first end and a second end. The contact layer electrically couples the nanowires through at least the first end of each of the nanowires. The shunt is electrically coupled to the contact layer. All of the nanowires are substantially parallel to each other. A first contact resistivity between the first end and the contact layer ranges from 10?13 ?-m2 to 10?7 ?-m2. A first work function between the first end and the contact layer is less than 0.8 electron volts. The contact layer is associated with a first thermal resistance ranging from 10?2 K/W to 1010 K/W.
    Type: Application
    Filed: February 1, 2012
    Publication date: October 4, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Matthew L. Scullin, Madhav A. Karri, Adam Lorimer, Sylvain Muckenhirn, Gabriel A. Matus, Justin Tynes Kardel, Barbara Wacker
  • Publication number: 20120152295
    Abstract: A structure and method for at least one array of nanowires partially embedded in a matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first segment associated with a first end, a second segment associated with a second end, and a third segment between the first segment and the second segment. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. The third segment is substantially surrounded by the one or more fill materials. The first segment protrudes from the one or more fill materials.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Gabriel A. Matus, Mingqiang Yi, Matthew L. Scullin, Justin Tynes Kardel
  • Patent number: 8043513
    Abstract: Fully monolithic gimbal-less micro-electro-mechanical-system (MEMS) devices with large static optical beam deflection and fabrications methods are disclosed. The devices can achieve high speed of operation for both axes. Actuators are connected to a device, or device mount by linkages that allow static two-axis rotation in addition to pistoning without the need for gimbals, or specialized isolation technologies. The device may be actuated by vertical comb-drive actuators, which are coupled by bi-axial flexures to a central micromirror or device mount. Devices may be fabricated by etching an upper layer both from the top side and from the bottom side to form beams at different levels. The beams include a plurality of lower beams, a plurality of full-thickness beams, and a plurality of upper beams, the lower, full-thickness and upper beams That form vertical combdrive actuators, suspension beams, flexures, and a device mount.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: October 25, 2011
    Assignee: Adriatic Research Institute
    Inventors: Veljko Milanovic, Gabriel A. Matus
  • Patent number: 7295726
    Abstract: Fully monolithic gimbal-less micro-electro-mechanical-system (MEMS) devices with large static optical beam deflection and fabrications methods are disclosed. The devices can achieve high speed of operation for both axes. Actuators are connected to a device, or device mount by linkages that allow static two-axis rotation in addition to pistoning without the need for gimbals, or specialized isolation technologies. The device may be actuated by vertical comb-drive actuators, which are coupled by bi-axial flexures to a central micromirror or device mount. Devices may be fabricated by etching an upper layer both from the top side and from the bottom side to form beams at different levels, The beams include a plurality of lower beams, a plurality of full-thickness beams, and a plurality of upper beams, the lower, full-thickness and upper beams That form vertical combdrive actuators, suspension beams, flexures, and a device mount.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: November 13, 2007
    Assignee: Adriatic Research Institute
    Inventors: Veljko Milanovic, Gabriel A. Matus