Patents by Inventor Gabriel Hay Graham

Gabriel Hay Graham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141541
    Abstract: An apparatus for electroplating a metal on a semiconductor substrate with high control over plated thickness on a die-level includes an ionically resistive ionically permeable element (e.g., a plate with channels), where the element allows for flow of ionic current through the element towards the substrate during electroplating, where the element includes a plurality of regions, each region having a pattern of varied local resistance, and where the pattern of varied local resistance repeats in at least two regions. An electroplating method includes providing a semiconductor substrate to an electroplating apparatus having an ionically resistive ionically permeable element or a grid-like shield having a pattern correlating with a pattern of features on the substrate, and plating metal, while the pattern on the substrate remains spatially aligned with the pattern of the element or the grid-like shield for at least a portion of the total electroplating time.
    Type: Application
    Filed: March 15, 2022
    Publication date: May 2, 2024
    Inventors: Lee Peng Chua, Gabriel Hay Graham, Bryan L. Buckalew, Stephen J. Banik, II, Santosh Kumar, James Isaac Fortner, Robert Rash, Steven T. Mayer
  • Publication number: 20240076795
    Abstract: An ionically resistive ionically permeable element for use in an electroplating apparatus includes ribs to tailor hydrodynamic environment proximate a substrate during electroplating. In one implementation, the ionically resistive ionically permeable element includes a channeled portion that is at least coextensive with a plating face of the substrate, and a plurality of ribs extending from the substrate-facing surface of the channeled portion towards the substrate. Ribs include a first plurality of ribs of full maximum height and a second plurality of ribs of smaller maximum height than the full maximum height. In one implementation the ribs of smaller maximum height are disposed such that the maximum height of the ribs gradually increases in a direction from one edge of the element to the center of the element.
    Type: Application
    Filed: January 19, 2022
    Publication date: March 7, 2024
    Inventors: Stephen J. Banik, II, Gabriel Hay Graham, Bryan L. Buckalew, Robert Rash, Lee Peng Chua, Frederick Dean Wilmot, Chien-Chieh Lin
  • Patent number: 11746435
    Abstract: An electroplating apparatus includes an electrode at the bottom of a chamber, an ionically resistive element with through holes arranged horizontally at the top of the chamber, with a membrane in the middle. One or more panels extend vertically and parallelly from the membrane to the element and extend linearly across the chamber, forming a plurality of regions between the membrane and the element. A substrate with a protuberance extending along a chord of the substrate and contacting a top surface of the element is arranged above a first region. An electrolyte flowed between the substrate and the element descends into the first region via the through holes on a first side of the protuberance and ascends from the first region via the through holes on a second side of the protuberance, forcing air bubbles out from a portion of the element associated with the first region.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: September 5, 2023
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Stephen J. Banik, Bryan L. Buckalew, Gabriel Hay Graham, Alfred Bostick, Sean Wilbur, John Floyd Ostrowski
  • Publication number: 20230175162
    Abstract: The embodiments herein relate to apparatuses and methods for electroplating one or more materials onto a substrate. Embodiments herein utilize a cross flow conduit in the electroplating cell to divert flow of fluid from a region between a substrate and a channeled ionically resistive plate positioned near the substrate down to a level lower than level of fluid in a fluid containment unit for collecting overflow fluid from the plating system for recirculation. The cross flow conduit can include channels cut into components of the plating cell to allow diverted flow, or can include an attachable diversion device mountable to an existing plating cell to divert flow downwards to the fluid containment unit. Embodiments also include a flow restrictor which may be a plate or a pressure relief valve for modulating flow of fluid in the cross flow conduit during plating.
    Type: Application
    Filed: January 17, 2023
    Publication date: June 8, 2023
    Inventors: Stephen J. Banik, II, Aaron Berke, Gabriel Hay Graham, Gregory J. Kearns, Lee Peng Chua, Bryan L. Buckalew
  • Patent number: 11585007
    Abstract: The embodiments herein relate to apparatuses and methods for electroplating one or more materials onto a substrate. Embodiments herein utilize a cross flow conduit in the electroplating cell to divert flow of fluid from a region between a substrate and a channeled ionically resistive plate positioned near the substrate down to a level lower than level of fluid in a fluid containment unit for collecting overflow fluid from the plating system for recirculation. The cross flow conduit can include channels cut into components of the plating cell to allow diverted flow, or can include an attachable diversion device mountable to an existing plating cell to divert flow downwards to the fluid containment unit. Embodiments also include a flow restrictor which may be a plate or a pressure relief valve for modulating flow of fluid in the cross flow conduit during plating.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: February 21, 2023
    Assignee: Lam Research Corporation
    Inventors: Stephen J. Banik, II, Aaron Berke, Gabriel Hay Graham, Gregory J. Kearns, Lee Peng Chua, Bryan L. Buckalew
  • Publication number: 20220119977
    Abstract: An electroplating apparatus includes an electrode at the bottom of a chamber, an ionically resistive element with through holes arranged horizontally at the top of the chamber, with a membrane in the middle. One or more panels extend vertically and parallelly from the membrane to the element and extend linearly across the chamber, forming a plurality of regions between the membrane and the element. A substrate with a protuberance extending along a chord of the substrate and contacting a top surface of the element is arranged above a first region. An electrolyte flowed between the substrate and the element descends into the first region via the through holes on a first side of the protuberance and ascends from the first region via the through holes on a second side of the protuberance, forcing air bubbles out from a portion of the element associated with the first region.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 21, 2022
    Inventors: Stephen J. BANIK, Bryan L. BUCKALEW, Gabriel Hay GRAHAM, Alfred BOSTICK, Sean WILBUR, John Floyd OSTROWSKI
  • Patent number: 11214887
    Abstract: An electroplating apparatus includes an electrode at the bottom of a chamber, an ionically resistive element with through holes arranged horizontally at the top of the chamber, with a membrane in the middle. One or more panels extend vertically and parallelly from the membrane to the element and extend linearly across the chamber, forming a plurality of regions between the membrane and the element. A substrate with a protuberance extending along a chord of the substrate and contacting a top surface of the element is arranged above a first region. An electrolyte flowed between the substrate and the element descends into the first region via the through holes on a first side of the protuberance and ascends from the first region via the through holes on a second side of the protuberance, forcing air bubbles out from a portion of the element associated with the first region.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: January 4, 2022
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Stephen J. Banik, Bryan L. Buckalew, Gabriel Hay Graham, Alfred Bostick, Sean Wilbur, John Floyd Ostrowski
  • Publication number: 20210395913
    Abstract: The embodiments herein relate to apparatuses and methods for electroplating one or more materials onto a substrate. Embodiments herein utilize a cross flow conduit in the electroplating cell to divert flow of fluid from a region between a substrate and a channeled ionically resistive plate positioned near the substrate down to a level lower than level of fluid in a fluid containment unit for collecting overflow fluid from the plating system for recirculation. The cross flow conduit can include channels cut into components of the plating cell to allow diverted flow, or can include an attachable diversion device mountable to an existing plating cell to divert flow downwards to the fluid containment unit. Embodiments also include a flow restrictor which may be a plate or a pressure relief valve for modulating flow of fluid in the cross flow conduit during plating.
    Type: Application
    Filed: November 15, 2019
    Publication date: December 23, 2021
    Applicant: Lam Research Corporation
    Inventors: Stephen J. Banik, II, Aaron Berke, Gabriel Hay Graham, Gregory J. Kearns, Lee Peng Chua, Bryan L. Buckalew
  • Publication number: 20200270759
    Abstract: An electroplating apparatus includes an electrode at the bottom of a chamber, an ionically resistive element with through holes arranged horizontally at the top of the chamber, with a membrane in the middle. One or more panels extend vertically and parallelly from the membrane to the element and extend linearly across the chamber, forming a plurality of regions between the membrane and the element. A substrate with a protuberance extending along a chord of the substrate and contacting a top surface of the element is arranged above a first region. An electrolyte flowed between the substrate and the element descends into the first region via the through holes on a first side of the protuberance and ascends from the first region via the through holes on a second side of the protuberance, forcing air bubbles out from a portion of the element associated with the first region.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Inventors: Stephen J. BANIK, Bryan L. BUCKALEW, Gabriel Hay GRAHAM, Alfred BOSTICK, Sean WILBUR, John Floyd OSTROWSKI
  • Patent number: 10655240
    Abstract: An electroplating apparatus includes an electrode at the bottom of a chamber, an ionically resistive element with through holes arranged horizontally at the top of the chamber, with a membrane in the middle. One or more panels extend vertically and parallelly from the membrane to the element and extend linearly across the chamber, forming a plurality of regions between the membrane and the element. A substrate with a protuberance extending along a chord of the substrate and contacting a top surface of the element is arranged above a first region. An electrolyte flowed between the substrate and the element descends into the first region via the through holes on a first side of the protuberance and ascends from the first region via the through holes on a second side of the protuberance, forcing air bubbles out from a portion of the element associated with the first region.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: May 19, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Stephen J. Banik, Bryan L. Buckalew, Gabriel Hay Graham, Alfred Bostick, Sean Wilbur, John Floyd Ostrowski
  • Publication number: 20190338440
    Abstract: An electroplating apparatus includes an electrode at the bottom of a chamber, an ionically resistive element with through holes arranged horizontally at the top of the chamber, with a membrane in the middle. One or more panels extend vertically and parallelly from the membrane to the element and extend linearly across the chamber, forming a plurality of regions between the membrane and the element. A substrate with a protuberance extending along a chord of the substrate and contacting a top surface of the element is arranged above a first region. An electrolyte flowed between the substrate and the element descends into the first region via the through holes on a first side of the protuberance and ascends from the first region via the through holes on a second side of the protuberance, forcing air bubbles out from a portion of the element associated with the first region.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Inventors: Stephen J. Banik, Bryan L. Buckalew, Gabriel Hay Graham, Alfred Bostick, Sean Wilbur, John Floyd Ostrowski
  • Patent number: 10233556
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. Also typically present is an edge flow element configured to direct electrolyte into a corner formed between the substrate and substrate holder. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 19, 2019
    Assignee: Lam Research Corporation
    Inventors: Gabriel Hay Graham, Jacob Lee Hiester, Lee Peng Chua, Bryan L. Buckalew
  • Publication number: 20180312991
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved azimuthal uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; an ionically resistive ionically permeable element (“the element”) configured to be positioned proximate the substrate; and a shield configured for providing azimuthally asymmetrical shielding and positioned between the substrate holder and the element such that the closest distance between the substrate-facing surface of the shield and the working surface of the substrate is less than 2 mm. In some embodiments there is an electrolyte-filled gap between the substrate-facing surface of the element and the shield during electroplating. The substrate-facing surface of the shield may be contoured such that the distance from different positions of the shield to the substrate is varied.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 1, 2018
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Steven T. Mayer, Robert Rash, Aaron Berke
  • Patent number: 10094034
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. Also typically present is an edge flow element configured to direct electrolyte into a corner formed between the substrate and substrate holder. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Gabriel Hay Graham, Bryan L. Buckalew, Steven T. Mayer, Robert Rash, James Isaac Fortner, Lee Peng Chua
  • Patent number: 10094035
    Abstract: Various embodiments herein relate to methods and apparatus for electroplating material onto substrates. Often the substrate is a semiconductor substrate. Various techniques described herein utilize a number of different electroplating stages, where the convection conditions vary between the different electroplating stages. In many cases, at least one ultra-low convection stage is used. The ultra-low convection stage may be paired with an initial stage and a final stage that have higher convection conditions. By controlling the convection conditions as described herein, very uniform plating results can be achieved, even when differently sized and/or shaped features are provided on a single substrate.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Boon Kang Ong
  • Publication number: 20180258546
    Abstract: Methods and apparatus for electroplating substrates are described herein. In some cases, an ionically resistive element is positioned near the substrate, creating a cross flow manifold between the ionically resistive element and the substrate. During plating, fluid may enter the cross flow manifold upward through the channels in the ionically resistive element, and (optionally) laterally through a cross flow side inlet. The flow paths combine in the cross flow manifold and exit at the cross flow outlet, which may be positioned opposite the cross flow inlet. In some embodiments, the ionically resistive element may include two or more flow regions, where the flow through each flow region is independently controllable. In these or other embodiments, an electrolyte jet may be included to flow additional electrolyte toward the substrate at a particular radial location or locations during plating. In some embodiments, the ionically resistive element may be omitted.
    Type: Application
    Filed: March 9, 2017
    Publication date: September 13, 2018
    Inventors: Gabriel Hay Graham, Bryan L. Buckalew, Lee Peng Chua, Robert Rash, James Isaac Fortner, Aaron Berke
  • Patent number: 9988733
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved azimuthal uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; an ionically resistive ionically permeable element (“the element”) configured to be positioned proximate the substrate; and a shield configured for providing azimuthally asymmetrical shielding and positioned between the substrate holder and the element such that the closest distance between the substrate-facing surface of the shield and the working surface of the substrate is less than 2 mm. In some embodiments there is an electrolyte-filled gap between the substrate-facing surface of the element and the shield during electroplating. The substrate-facing surface of the shield may be contoured such that the distance from different positions of the shield to the substrate is varied.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 5, 2018
    Assignee: Lam Research Corporation
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Steven T. Mayer, Robert Rash, Aaron Berke
  • Publication number: 20170058417
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. Also typically present is an edge flow element configured to direct electrolyte into a corner formed between the substrate and substrate holder. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet.
    Type: Application
    Filed: October 27, 2015
    Publication date: March 2, 2017
    Inventors: Gabriel Hay Graham, Bryan L. Buckalew, Steven T. Mayer, Robert Rash, James Isaac Fortner, Lee Peng Chua
  • Publication number: 20160362809
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved azimuthal uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; an ionically resistive ionically permeable element (“the element”) configured to be positioned proximate the substrate; and a shield configured for providing azimuthally asymmetrical shielding and positioned between the substrate holder and the element such that the closest distance between the substrate-facing surface of the shield and the working surface of the substrate is less than 2 mm. In some embodiments there is an electrolyte-filled gap between the substrate-facing surface of the element and the shield during electroplating. The substrate-facing surface of the shield may be contoured such that the distance from different positions of the shield to the substrate is varied.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 15, 2016
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Steven T. Mayer, Robert Rash, Aaron Berke
  • Publication number: 20160265132
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. Also typically present is an edge flow element configured to direct electrolyte into a corner formed between the substrate and substrate holder. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventors: Gabriel Hay Graham, Jacob Lee Hiester, Lee Peng Chua, Bryan L. Buckalew