Patents by Inventor Gabriel L. Converse

Gabriel L. Converse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220062004
    Abstract: A composite material for use, for example, as an orthopedic implant, that includes a porous reinforced composite scaffold that includes a polymer, reinforcement particles distributed throughout the polymer, and a substantially continuously interconnected plurality of pores that are distributed throughout the polymer, each of the pores in the plurality of pores defined by voids interconnected by struts, each pore void having a size within a range from about 10 to 500 ?m. The porous reinforced composite scaffold has a scaffold volume that includes a material volume defined by the polymer and the reinforcement particles, and a pore volume defined by the plurality of pores. The reinforcement particles are both embedded within the polymer and exposed on the struts within the pore voids. The polymer may be a polyaryletherketone polymer and the reinforcement particles may be anisometric calcium phosphate particles.
    Type: Application
    Filed: November 4, 2021
    Publication date: March 3, 2022
    Applicant: HAPPE SPINE, LLC
    Inventors: Ryan K. ROEDER, Gabriel L. CONVERSE, Stephen M. SMITH
  • Patent number: 11179243
    Abstract: Implantable devices for orthopedic, including spine and other uses are formed of porous reinforced polymer scaffolds. Scaffolds include a thermoplastic polymer forming a porous matrix that has continuously interconnected pores. The porosity and the size of the pores within the scaffold are selectively formed during synthesis of the composite material, and the composite material includes a plurality of reinforcement particles integrally formed within and embedded in the matrix and exposed on the pore surfaces. The reinforcement particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 23, 2021
    Assignee: HAPPE SPINE LLC
    Inventors: Ryan K. Roeder, Gabriel L. Converse, Stephen M. Smith
  • Publication number: 20210177620
    Abstract: A composite material for use, for example, as an orthopedic implant, that includes a porous reinforced composite scaffold that includes a polymer, reinforcement particles distributed throughout the polymer, and a substantially continuously interconnected plurality of pores that are distributed throughout the polymer, each of the pores in the plurality of pores defined by voids interconnected by struts, each pore void having a size within a range from about 10 to 500 ?m. The porous reinforced composite scaffold has a scaffold volume that includes a material volume defined by the polymer and the reinforcement particles, and a pore volume defined by the plurality of pores. The reinforcement particles are both embedded within the polymer and exposed on the struts within the pore voids. The polymer may be a polyaryletherketone polymer and the reinforcement particles may be anisometric calcium phosphate particles.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 17, 2021
    Applicant: HAPPE SPINE, LLC
    Inventors: Ryan K. ROEDER, Gabriel L. CONVERSE, Stephen M. SMITH
  • Patent number: 10945854
    Abstract: Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: March 16, 2021
    Assignee: HAPPE SPINE, LLC
    Inventors: Ryan K Roeder, Gabriel L Converse, Stephen M Smith
  • Publication number: 20210015977
    Abstract: Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Application
    Filed: November 13, 2013
    Publication date: January 21, 2021
    Inventors: Ryan K. Roeder, Gabriel L. Converse, Stephen M. Smith
  • Publication number: 20210000611
    Abstract: Implantable devices for orthopedic, including spine and other uses are formed of porous reinforced polymer scaffolds. Scaffolds include a thermoplastic polymer forming a porous matrix that has continuously interconnected pores. The porosity and the size of the pores within the scaffold are selectively formed during synthesis of the composite material, and the composite material includes a plurality of reinforcement particles integrally formed within and embedded in the matrix and exposed on the pore surfaces. The reinforcement particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 7, 2021
    Inventors: Ryan K. ROEDER, Gabriel L. CONVERSE, Stephen M. SMITH
  • Publication number: 20190083282
    Abstract: Implantable devices for orthopedic, including spine and other uses are formed of porous reinforced polymer scaffolds. Scaffolds include a thermoplastic polymer forming a porous matrix that has continuously interconnected pores. The porosity and the size of the pores within the scaffold are selectively formed during synthesis of the composite material, and the composite material includes a plurality of reinforcement particles integrally formed within and embedded in the matrix and exposed on the pore surfaces. The reinforcement particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: Ryan K. ROEDER, Gabriel L. CONVERSE, Stephen M. SMITH
  • Publication number: 20140236299
    Abstract: Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Application
    Filed: November 13, 2013
    Publication date: August 21, 2014
    Inventors: Ryan K. Roeder, Gabriel L. Converse, Stephen M. Smith
  • Publication number: 20080206297
    Abstract: Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Application
    Filed: February 28, 2008
    Publication date: August 28, 2008
    Inventors: Ryan K. Roeder, Gabriel L. Converse, Stephen M. Smith