Patents by Inventor Gabriel M. VEITH

Gabriel M. VEITH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11824162
    Abstract: A battery includes an anode, a cathode, and a porous separator having a surface and percolating pores providing a porosity of from 20% to 80%. A passively impact resistant composite electrolyte includes an electrolyte and electrically non-conducting particles that enable shear thickening. The particles can have a polydispersity index of no greater than 0.1, an average particle size in a range of from 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. The shear thickening enabling particles can be from 10 wt. % to 40 wt. % of the total weight of the separator and shear thickening particles. Between 20-40 wt. % of the shear thickening enabling particles are located in the pores of the separator.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: November 21, 2023
    Assignee: UT-BATTELLE, LLC
    Inventors: Beth L. Armstrong, Gabriel M. Veith, Sergiy Kalnaus, Hsin Wang, Katie L. Browning, Kevin M. Cooley
  • Patent number: 11824163
    Abstract: A method of making a passively impact resistant battery includes the steps of providing a porous separator material having pores and a surface, and providing a suspension composition including shear thickening enabling particles and a particle suspension solvent for suspending the shear thickening enabling particles. The shear thickening particles have a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. The suspension composition is applied to the separator material, wherein a portion of the particles and suspension solvent penetrate the pores. The suspension solvent is evaporated from the separator material. An anode layer and a cathode layer are applied. An electrolyte composition is applied between the anode layer and the cathode layer. The electrolyte composition includes an electrolyte solvent and an electrolyte salt.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: November 21, 2023
    Assignee: UT-BATTELLE, LLC
    Inventors: Beth L. Armstrong, Gabriel M. Veith, Sergiy Kalnaus, Hsin Wang, Katie L. Browning, Kevin M. Cooley
  • Publication number: 20220320587
    Abstract: A battery includes a cathode, an anode comprising Si, an electrolyte comprising glyme, and a lithium salt having at least one fluorine or boron atom in the anion. The glyme can have the formula CH3(OCH2CH2)nOCH3, where 1?n?4. The glyme can have the formula CnH2nOm, where 8?n?4 and 4?m?1. The electrolyte can further include an additive, wherein the additive has low solubility for the lithium salts such that the additive does not change the coordination of the ions in the glyme, has a viscosity<1 cP at 25° C., and is miscible with the glyme. An electrolyte for a battery and a method of making a battery are also discussed.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 6, 2022
    Inventors: Jagjit Nanda, Guang Yang, Gabriel M. Veith
  • Publication number: 20220166065
    Abstract: A method of making a passively impact resistant battery includes the steps of providing a porous separator material having pores and a surface, and providing a suspension composition including shear thickening enabling particles and a particle suspension solvent for suspending the shear thickening enabling particles. The shear thickening particles have a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. The suspension composition is applied to the separator material, wherein a portion of the particles and suspension solvent penetrate the pores. The suspension solvent is evaporated from the separator material. An anode layer and a cathode layer are applied. An electrolyte composition is applied between the anode layer and the cathode layer. The electrolyte composition includes an electrolyte solvent and an electrolyte salt.
    Type: Application
    Filed: January 7, 2022
    Publication date: May 26, 2022
    Inventors: Beth L. Armstrong, Gabriel M. Veith, Sergiy Kalnaus, Hsin Wang, Katie L. Browning, Kevin M. Cooley
  • Publication number: 20220158240
    Abstract: A battery includes an anode, a cathode, and a porous separator having a surface and percolating pores providing a porosity of from 20% to 80%. A passively impact resistant composite electrolyte includes an electrolyte and electrically non-conducting particles that enable shear thickening. The particles can have a polydispersity index of no greater than 0.1, an average particle size in a range of from 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. The shear thickening enabling particles can be from 10 wt. % to 40 wt. % of the total weight of the separator and shear thickening particles. Between 20-40 wt. % of the shear thickening enabling particles are located in the pores of the separator.
    Type: Application
    Filed: January 7, 2022
    Publication date: May 19, 2022
    Inventors: Beth L. Armstrong, Gabriel M. Veith, Sergiy Kalnaus, Hsin Wang, Katie L. Browning, Kevin M. Cooley
  • Patent number: 11233271
    Abstract: A method of making a passively impact resistant composite electrolyte and separator layer includes providing a suspension composition including electrically non-conducting particles that enable shear thickening. The particles can have a polydispersity index of no greater than 0.1, an average particle size in a range of from 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. A particle suspension solvent is provided for suspending the particles. The suspension composition is applied to a porous separator material. A portion of the particles and suspension solvent penetrate the pores and the remainder of the particles in the suspension composition are distributed across the surface of the separator material. The suspension solvent is evaporated from the separator material to provide a shear thickening particle loaded separator. A separator assembly and a passivated battery are also disclosed.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: January 25, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Beth L. Armstrong, Gabriel M. Veith, Sergiy Kalnaus, Hsin Wang, Katie L. Browning, Kevin M. Cooley
  • Patent number: 11050049
    Abstract: An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 29, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Robert L. Sacci, Nancy J. Dudney, Lance W. Gill, Edward W. Hagaman, Gabriel M. Veith
  • Patent number: 10879533
    Abstract: Compositions and methods of making compositions are provided for nitride- and/or oxide-modified electrode compositions. In certain embodiments, the nitride- and/or oxide-modified compositions have the general formula M1-zM?zOaF3-xNy. Such compositions may be used as bulk or surface compositions, and used in a battery as the anode or cathode. In other embodiments, the electrode includes a surface coating composition selected from metal nitrides and metal oxides, and a core composition having the formula M1-zM?zOaF3-x, or an oxide fluoride.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: December 29, 2020
    Assignee: UT-BATTELLE, LLC
    Inventors: Craig A. Bridges, Mariappan Parans Paranthaman, Gabriel M. Veith, Zhonghe Bi
  • Publication number: 20200287243
    Abstract: A method of making a passively impact resistant composite electrolyte and separator layer includes providing a suspension composition including electrically non-conducting particles that enable shear thickening. The particles can have a polydispersity index of no greater than 0.1, an average particle size in a range of from 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. A particle suspension solvent is provided for suspending the particles. The suspension composition is applied to a porous separator material. A portion of the particles and suspension solvent penetrate the pores and the remainder of the particles in the suspension composition are distributed across the surface of the separator material. The suspension solvent is evaporated from the separator material to provide a shear thickening particle loaded separator. A separator assembly and a passivated battery are also disclosed.
    Type: Application
    Filed: March 31, 2020
    Publication date: September 10, 2020
    Inventors: Beth L. Armstrong, Gabriel M. Veith, Sergiy Kalnaus, Hsin Wang, Katie L. Browning, Kevin M. Cooley
  • Patent number: 10637100
    Abstract: A method of making a passively impact resistant composite electrolyte and separator layer includes providing a suspension composition including electrically non-conducting particles that enable shear thickening. The particles can have a polydispersity index of no greater than 0.1, an average particle size in a range of from 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. A particle suspension solvent is provided for suspending the particles. The suspension composition is applied to a porous separator material. A portion of the particles and suspension solvent penetrate the pores and the remainder of the particles in the suspension composition are distributed across the surface of the separator material. The suspension solvent is evaporated from the separator material to provide a shear thickening particle loaded separator. A separator assembly and a passivated battery are also disclosed.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: April 28, 2020
    Assignee: UT-BATTELLE, LLC
    Inventors: Beth L. Armstrong, Gabriel M. Veith, Sergiy Kalnaus, Hsin Wang, Katie L. Browning, Kevin M. Cooley
  • Publication number: 20190326632
    Abstract: A method of making a passively impact resistant composite electrolyte and separator layer includes providing a suspension composition including electrically non-conducting particles that enable shear thickening. The particles can have a polydispersity index of no greater than 0.1, an average particle size in a range of from 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. A particle suspension solvent is provided for suspending the particles. The suspension composition is applied to a porous separator material. A portion of the particles and suspension solvent penetrate the pores and the remainder of the particles in the suspension composition are distributed across the surface of the separator material. The suspension solvent is evaporated from the separator material to provide a shear thickening particle loaded separator. A separator assembly and a passivated battery are also disclosed.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 24, 2019
    Inventors: BETH L. ARMSTRONG, GABRIEL M. VEITH, SERGIY KALNAUS, HSIN WANG, KATIE L. BROWNING, KEVIN M. COOLEY
  • Patent number: 10424792
    Abstract: A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: September 24, 2019
    Assignee: UT-Battelle LLC
    Inventors: Nancy J. Dudney, Chengdu Liang, Jagjit Nanda, Gabriel M. Veith, Yoongu Kim, Surendra Kumar Martha
  • Patent number: 10347934
    Abstract: A passively impact resistant composite electrolyte composition includes an electrolyte solvent, up to 6M of an electrolyte salt, and shear thickening ceramic particles having an outer surface. The shear thickening ceramic particles have an absolute zeta potential of greater than ±40 mV. The shear thickening ceramic particles have a polydispersity index of no greater than 0.1, and an average particle size of in a range of 50 nm to 1 um. The ceramic particles have bonded to the outer surface steric stabilizing polymers. The steric stabilizing polymers have a chain length of from 0.5 nm to 100 nm. A passively impact resistant laminated battery and a method of making the electrolyte composition are also disclosed.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: July 9, 2019
    Assignee: UT-Battelle, LLC
    Inventors: Gabriel M. Veith, Beth L. Armstrong, Brian H. Shen, Wyatt E. Tenhaeff, Sergiy Kalnaus, Hsin Wang
  • Patent number: 10347945
    Abstract: A passively impact resistant composite electrolyte composition includes an aprotic electrolyte solvent, from 0.5 to 6M of an electrolyte salt, and shear thickening particles having a polydispersity index of no greater than 0.1, an average particle size in a range of 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. The shear thickening particles have thereon an electrochemical double layer. The composition further includes a stabilizing surfactant. The stabilizing surfactant includes a first portion for adsorbing to the particles, and a second portion that is absorbed in the solvent. The length of the surfactant from the first portion to the second portion is greater than twice the thickness of the electrochemical double layer. Batteries and electrochemical devices incorporating the electrolyte composition are disclosed. Methods of making the electrolyte composition and of operating a battery are also disclosed.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: July 9, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Gabriel M. Veith, Beth L. Armstrong, Katie L. Browning, Hsin Wang, Sergiy Kalnaus
  • Publication number: 20190198858
    Abstract: An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 27, 2019
    Inventors: Nancy J. DUDNEY, Edward W. HAGAMAN, Gabriel M. VEITH, Lance W. GILL, Robert L. SACCI
  • Publication number: 20190181504
    Abstract: A passively impact resistant composite electrolyte composition includes an aprotic electrolyte solvent, from 0.5 to 6M of an electrolyte salt, and shear thickening particles having a polydispersity index of no greater than 0.1, an average particle size in a range of 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. The shear thickening particles have thereon an electrochemical double layer. The composition further includes a stabilizing surfactant. The stabilizing surfactant includes a first portion for adsorbing to the particles, and a second portion that is absorbed in the solvent. The length of the surfactant from the first portion to the second portion is greater than twice the thickness of the electrochemical double layer. Batteries and electrochemical devices incorporating the electrolyte composition are disclosed. Methods of making the electrolyte composition and of operating a battery are also disclosed.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 13, 2019
    Inventors: Gabriel M. Veith, Beth L. Armstrong, Katie L. Browning, Hsin Wang, Sergiy Kalnaus
  • Patent number: 10263246
    Abstract: An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: April 16, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Nancy J. Dudney, Edward W. Hagaman, Gabriel M. Veith, Lance W. Gill, Robert L. Sacci
  • Publication number: 20180316011
    Abstract: Compositions and methods of making compositions are provided for nitride- and/or oxide-modified electrode compositions. In certain embodiments, the nitride- and/or oxide-modified compositions have the general formula M1-zM?zOaF3-xNy. Such compositions may be used as bulk or surface compositions, and used in a battery as the anode or cathode. In other embodiments, the electrode includes a surface coating composition selected from metal nitrides and metal oxides, and a core composition having the formula M1-zM?zOaF3-x, or an oxide fluoride.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 1, 2018
    Applicant: UT-BATTELLE, LLC
    Inventors: Craig A. Bridges, Mariappan Parans Paranthaman, Gabriel M. Veith, Zhonghe Bi
  • Patent number: 10044038
    Abstract: Compositions and methods of making compositions are provided for nitride- and/or oxide-modified electrode compositions. In certain embodiments, the nitride- and/or oxide-modified compositions have the general formula M1?zM?zOaF3?xNy. Such compositions may be used as bulk or surface compositions, and used in a battery as the anode or cathode. In other embodiments, the electrode includes a surface coating composition selected from metal nitrides and metal oxides, and a core composition having the formula M1?zM?zOaF3?x, or an oxide fluoride.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 7, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Craig A. Bridges, Mariappan Parans Paranthaman, Gabriel M. Veith, Zhonghe Bi
  • Patent number: 9837665
    Abstract: A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 5, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Nancy J. Dudney, Chengdu Liang, Jagjit Nanda, Gabriel M. Veith, Yoongu Kim, Surendra Kumar Martha