Patents by Inventor Gabriel Puc

Gabriel Puc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220073407
    Abstract: An apparatus for fabricating a hollow core optical fiber with a controllable core region (in terms of diameter) is based upon regulating conditions (gas flow, volume, and/or temperature) within the hollow core region during the fiber draw process. The introduction of a gas, or any change in volume or temperature of the hollow core region, allows for the diameter of the hollow core region to self-regulate as a multistructured core rod (MCR) is drawn down into the final hollow core optical fiber structure. This self-regulation provides a core region having a diameter that selected and then stabilized for the duration of the draw process. The inventive apparatus is also useful in controlling the diameter of any selected hollow region of an MCR including, but not limited to, shunts and corner capillaries disposed around the core region.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Applicant: OFS Fitel, LLC
    Inventors: Matt Corrado, David J DiGiovanni, Brian Mangan, Gabriel Puc, Robert S Windeler
  • Patent number: 11221444
    Abstract: The selection of starting materials used in the process of forming an MCR is controlled to specifically define the physical properties of the core tube and/or the capillary tubes in the local vicinity of the core tube. The physical properties are considered to include, but are not limited to, the diameter of a given tube/capillary, its wall thickness, and its geometry (e.g., circular, non-circular). A goal is to select starting materials with physical properties that yield a final hollow core optical fiber with a “uniform” core region (for the purposes of the present invention, a “uniform” core region is one where the struts of cladding periodic array surrounding the central core are uniform in length and thickness (with the nodes between the struts thus being uniformly spaced apart), which yields a core wall of essentially uniform thickness and circularity.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: January 11, 2022
    Assignee: OFS FITEL, LLC
    Inventors: Brian Mangan, Gabriel Puc, Matt Corrado, Tristan Kremo
  • Patent number: 11203547
    Abstract: A technique for fabricating a hollow core optical fiber with a controllable core region (in terms of diameter) is based upon regulating conditions (gas flow, volume, and/or temperature) within the hollow core region during the fiber draw process. The introduction of a gas, or any change in volume or temperature of the hollow core region, allows for the diameter of the hollow core region to self-regulate as a multistructured core rod (MCR) is drawn down into the final hollow core optical fiber structure. This self-regulation provides a core region having a diameter that selected and then stabilized for the duration of the draw process. The inventive process is also useful in controlling the diameter of any selected hollow region of an MCR including, but not limited to, shunts and corner capillaries disposed around the core region.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: December 21, 2021
    Assignee: OFS FITEL, LLC
    Inventors: Matt Corrado, David J DiGiovanni, Brian Mangan, Gabriel Puc, Robert S Windeler
  • Publication number: 20200079680
    Abstract: A process of fabricating the microstructure core rod preform used in the fabrication of a hollow core optical fiber includes the step of applying external pressure to selected hollow regions during the drawing of the preform from the initial assembly of capillary tubes. The application of pressure assists the selected hollow regions in maintaining their shape as much as possible during draw, and reduces distortions in the microstructure cells in close proximity to the core by controlling glass distribution during MCR draw.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 12, 2020
    Applicant: OFS Fitel, LLC
    Inventors: Matt Corrado, David J DiGiovanni, Brian Mangan, Gabriel Puc, Robert S Windeler, Tristan Kremp
  • Publication number: 20200024178
    Abstract: A technique for fabricating a hollow core optical fiber with a controllable core region (in terms of diameter) is based upon regulating conditions (gas flow, volume, and/or temperature) within the hollow core region during the fiber draw process. The introduction of a gas, or any change in volume or temperature of the hollow core region, allows for the diameter of the hollow core region to self-regulate as a multistructured core rod (MCR) is drawn down into the final hollow core optical fiber structure. This self-regulation provides a core region having a diameter that selected and then stabilized for the duration of the draw process. The inventive process is also useful in controlling the diameter of any selected hollow region of an MCR including, but not limited to, shunts and corner capillaries disposed around the core region.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 23, 2020
    Applicant: OFS Fitel, LLC
    Inventors: Matt Corrado, David J. DiGiovanni, Brian Mangan, Gabriel Puc, Robert S Windeler
  • Patent number: 9093815
    Abstract: A rare earth doped optical fiber amplifier is configured to have an enlarged core region and a trench formed adjacent to the core, where at least an inner portion of the trench is also formed to include a rare earth dopant. The presence of the rare earth dopant in the inner region of the cladding minimizes transient power fluctuations within the amplifier as the number of optical signals being amplified changes. The addition of rare earth dopant to the cladding increases the overlap between the pump, signal and the rare earth ions and thus improves the gain efficiency for the optical signal. The relatively large core diameter increases the saturation power level of the rare earth dopant and decreases the transients present in the gain as the input signal power fluctuates.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 28, 2015
    Assignee: OFS Fitel, LLC
    Inventors: Soren Herstrom, Kwang S Kim, Bera Palsdottir, Gabriel Puc, Thierry F Taunay
  • Publication number: 20140063594
    Abstract: A rare earth doped optical fiber amplifier is configured to have an enlarged core region and a trench formed adjacent to the core, where at least an inner portion of the trench is also formed to include a rare earth dopant. The presence of the rare earth dopant in the inner region of the cladding minimizes transient power fluctuations within the amplifier as the number of optical signals being amplified changes. The addition of rare earth dopant to the cladding increases the overlap between the pump, signal and the rare earth ions and thus improves the gain efficiency for the optical signal. The relatively large core diameter increases the saturation power level of the rare earth dopant and decreases the transients present in the gain as the input signal power fluctuates.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 6, 2014
    Inventors: Soren Herstrom, Kwang S. Kim, Bera Palsdottir, Gabriel Puc, Thierry F. Taunay