Patents by Inventor Gabriela Hernandez-Hoyos

Gabriela Hernandez-Hoyos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939392
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: March 26, 2024
    Assignee: Aptevo Research and Development LLC
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Patent number: 11725060
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: August 15, 2023
    Assignees: Aptevo Reserch and Development LLC, Alligator Bioscience AB
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Van Citters, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas
  • Publication number: 20220363773
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Application
    Filed: December 21, 2021
    Publication date: November 17, 2022
    Inventors: Gabriela HERNANDEZ-HOYOS, Elaine T. SEWELL, Catherine J. MCMAHAN, David BIENVENUE, John W. BLANKENSHIP, Danielle MITCHELL, Peter PAVLIK
  • Publication number: 20220242962
    Abstract: The present disclosure provides antibodies that specifically bind to 4-1BB and/or OX40, including bispecific antibodies that bind to 4-1BB and OX40, and compositions comprising such antibodies. Also provided are methods for treating disorders, such as cancer, using such antibodies and compositions.
    Type: Application
    Filed: August 12, 2020
    Publication date: August 4, 2022
    Inventors: David Leonard BIENVENUE, Gabriela HERNANDEZ-HOYOS, Lynda MISHER, Danielle Marie MITCHELL, Michelle Hase NELSON, Peter PAVLIK
  • Patent number: 11312786
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 26, 2022
    Assignees: Aptevo Research and Development LLC, Alligator Bioscience AB
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Mitchell, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas
  • Patent number: 11242400
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: February 8, 2022
    Assignee: Aptevo Research and Development LLC
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Publication number: 20200223933
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Application
    Filed: July 20, 2018
    Publication date: July 16, 2020
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Mitchell, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas
  • Patent number: 10676533
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: June 9, 2020
    Assignee: Aptevo Research and Development LLC
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Publication number: 20200165346
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Application
    Filed: September 21, 2017
    Publication date: May 28, 2020
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Publication number: 20190382503
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Application
    Filed: February 21, 2019
    Publication date: December 19, 2019
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Mitchell, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas
  • Patent number: 10239949
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: March 26, 2019
    Assignees: Aptevo Research and Development, LLC, Alligator Bioscience AB
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Mitchell, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas
  • Publication number: 20190071513
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Application
    Filed: March 22, 2018
    Publication date: March 7, 2019
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Publication number: 20190016816
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Application
    Filed: July 20, 2018
    Publication date: January 17, 2019
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Mitchell, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas