Patents by Inventor Gadi Shor

Gadi Shor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20240031815
    Abstract: This disclosure describes systems, methods, and devices related to enhanced feedback for secure mode wireless communications. A device may send a first null data packet (NDP) to a second device, and identify a second NDP received from the second device. The device may identify a location measurement report (LMR) received from the second device, the LMR including a first channel response indicative of a first arrival time of the first NDP at the second device and a first phase shift associated with the first NDP. The device may generate a second channel response indicative of a second arrival time of the second NDP at the device and a second phase shift associated with the second NDP. The device may determine that the first channel response does not match the second channel response, and may identify an attempted attack.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Qinghua Li, Feng Jiang, Jonathan Segev, Xiaogang Chen, Assaf Gurevitz, Gadi Shor, Robert Stacey
  • Publication number: 20240031093
    Abstract: This disclosure describes systems, methods, and devices related to enhanced sounding for secure mode wireless communications. A device may generate a channel sounding symbol comprising a first subcarrier and a second subcarrier, wherein a first amplitude of the first subcarrier is different than a second amplitude of the second subcarrier. The device may generate a channel sounding signal comprising the channel sounding symbol. The device may send the channel sounding signal to a second device.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Qinghua Li, Xiaogang Chen, Assaf Gurevitz, Feng Jiang, Jonathan Segev, Gadi Shor
  • Patent number: 11805420
    Abstract: This disclosure describes systems, methods, and devices related to enhanced feedback for secure mode wireless communications. A device may send a first null data packet (NDP) to a second device, and identify a second NDP received from the second device. The device may identify a location measurement report (LMR) received from the second device, the LMR including a first channel response indicative of a first arrival time of the first NDP at the second device and a first phase shift associated with the first NDP. The device may generate a second channel response indicative of a second arrival time of the second NDP at the device and a second phase shift associated with the second NDP. The device may determine that the first channel response does not match the second channel response, and may identify an attempted attack.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: October 31, 2023
    Assignee: Intel Corporation
    Inventors: Qinghua Li, Feng Jiang, Jonathan Segev, Xiaogang Chen, Assaf Gurevitz, Gadi Shor, Robert Stacey
  • Patent number: 11778582
    Abstract: This disclosure describes systems, methods, and devices related to secure location measurement sharing. A device may cause to send a first indication associated with a location of the device to a cloud server. The device may cause to send a second indication associated with a ranging information of an access point (AP), wherein the AP is connected to the cloud server. The device may identify an access token received from the cloud server, wherein the access token is associated with providing anonymized AP location information to the AP, and wherein the access token is associated with accessing channel allocation from a channel access database.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: October 3, 2023
    Assignee: Intel Corporation
    Inventors: Jonathan Segev, Qinghua Li, Feng Jiang, Xiaogang Chen, Emily Qi, Hassan Yaghoobi, Gadi Shor, Robert Stacey, Dibakar Das
  • Patent number: 11696226
    Abstract: In various aspects, a radio communication device is described including a housing, a plurality of radiohead circuits attached to the housing, baseband circuitry connected to the plurality of radiohead circuits via a digital interface; and one or more processors configured to select one or more radiohead circuits of the plurality of radiohead circuits for communication with another radio communication device to fulfill one or more predefined selection criteria with respect to a quality of a communication with the other radio communication device using the one or more selected radiohead circuits and to control the baseband circuitry to perform communication with the other radio communication device using the one or more selected radiohead circuits.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Ehud Reshef, Ofir Degani, Roya Doostnejad, Avishay Friedman, Nevo Idan, Eytan Mann, Ashoke Ravi, Gadi Shor, Shahar Gross, Ofir Klein, Chen Kojokaro
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11480668
    Abstract: Embodiments of an access point (AP), station (STA) and method of communication are generally described herein. In a null data packet (NDP) based ranging procedure between a responding STA and an initiating STA that is unassociated with the responding STA, the responding STA may: transmit a broadcast frame that indicates one or more ranging parameters; receive, from the initiating STA, an NDP announcement (NDPA) frame that indicates transmission of a first NDP from the initiating STA; detect the first NDP from the initiating STA; transmit a second NDP for transmission to the initiating STA; and transmit, to the initiating STA, a location measurement report (LMR) that indicates: a reception time of the first NDP at the responding STA, and a transmission time of the second NDP at the responding STA.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: October 25, 2022
    Assignee: Intel Corporation
    Inventors: Feng Jiang, Qinghua Li, Jonathan Segev, Bahareh Sadeghi, Thomas J. Kenney, Xiaogang Chen, Gadi Shor, Po-Kai Huang, Robert J. Stacey, Laurent Cariou
  • Publication number: 20220338260
    Abstract: An access point station (AP) communicates with a plurality of non-AP stations (STAs) within a synchronized transmission opportunity (S-TXOP). The S-TXOP may comprise an S-TXOP trigger followed by a plurality of S-TXOP slots. After transmission of the S-TXOP trigger, the AP may encode, for transmission within an S-TXOP slot, a downlink (DL) multi-user physical layer protocol data unit (DL MU-PPDU). The DL MU-PPDU may include a preamble followed by a data field. To indicate that a previously signaled resource unit (RU) allocation is to be used during the S-TXOP slot, the AP may encode the preamble to include an allocation ID of the previously signaled RU allocation in a signal field (SIG) of the preamble and to include a SIG-2 presence indicator to indicate that a second signal field (SIG-2) is not included in the preamble.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 20, 2022
    Inventors: Dave A. Cavalcanti, Dibakar Das, Laurent Cariou, Dmitry Vadimovich Akhmetov, Shahrnaz Azizi, Xiaogang Chen, Gadi Shor, Ehud Reshef, Juan Fang
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220201600
    Abstract: In various aspects, a radio communication device is described including a housing, a plurality of radiohead circuits attached to the housing, baseband circuitry connected to the plurality of radiohead circuits via a digital interface; and one or more processors configured to select one or more radiohead circuits of the plurality of radiohead circuits for communication with another radio communication device to fulfill one or more predefined selection criteria with respect to a quality of a communication with the other radio communication device using the one or more selected radiohead circuits and to control the baseband circuitry to perform communication with the other radio communication device using the one or more selected radiohead circuits.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Inventors: Ehud RESHEF, Ofir DEGANI, Roya DOOSTNEJAD, Avishay FRIEDMAN, Nevo IDAN, Eytan MANN, Ashoke RAVI, Gadi SHOR, Shahar GROSS, Ofir KLEIN, Chen KOJOKARO
  • Publication number: 20210266055
    Abstract: This disclosure describes systems, methods, and devices related to secure sounding signal. A device may generate two or more sounding signals to be sent using two or more antennas to a receiving device across a plurality of symbol intervals. The device may apply a first masking signal to a first sounding signal of the two or more sounding signals over a first symbol interval of the plurality of the symbol intervals. The device may apply a second masking signal to a second sounding signal over a second symbol interval of the plurality of the symbol intervals. The device may cause to send the two or more sounding signals to receiving device using the two or more antennas.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Inventors: Qinghua Li, Xiaogang Chen, Assaf Gurevitz, Feng Jiang, Xintian Lin, Jonathan Segev, Gadi Shor, Robert Stacey
  • Publication number: 20210250761
    Abstract: This disclosure describes systems, methods, and devices related to correlation reduction. A device may generate a sequence of pseudo-random symbols associated with a sounding signal to be transmitted to a first station device. The device may apply a modifier to the sequence of pseudo-random symbols. The device may generate a secure sounding signal from the modified sequence of pseudo-random symbols. The device may send the secure sounding signal to a first station device.
    Type: Application
    Filed: March 27, 2021
    Publication date: August 12, 2021
    Inventors: Qinghua Li, Xiaogang Chen, Xintian Lin, Gadi Shor, Robert Stacey, Chen Kojokaro, Jonathan Segev
  • Publication number: 20210218527
    Abstract: This disclosure describes systems, methods, and devices related to enhanced sounding for secure mode wireless communications. A device may generate a channel sounding symbol comprising a first subcarrier and a second subcarrier, wherein a first amplitude of the first subcarrier is different than a second amplitude of the second subcarrier. The device may generate a channel sounding signal comprising the channel sounding symbol. The device may send the channel sounding signal to a second device.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Inventors: Qinghua Li, Xiaogang Chen, Assaf Gurevitz, Feng Jiang, Jonathan Segev, Gadi Shor
  • Publication number: 20210120426
    Abstract: This disclosure describes systems, methods, and devices related to enhanced feedback for secure mode wireless communications. A device may send a first null data packet (NDP) to a second device, and identify a second NDP received from the second device. The device may identify a location measurement report (LMR) received from the second device, the LMR including a first channel response indicative of a first arrival time of the first NDP at the second device and a first phase shift associated with the first NDP. The device may generate a second channel response indicative of a second arrival time of the second NDP at the device and a second phase shift associated with the second NDP. The device may determine that the first channel response does not match the second channel response, and may identify an attempted attack.
    Type: Application
    Filed: December 24, 2020
    Publication date: April 22, 2021
    Inventors: Qinghua Li, Feng Jiang, Jonathan Segev, Xiaogang Chen, Assaf Gurevitz, Gadi Shor, Robert Stacey
  • Publication number: 20210068070
    Abstract: This disclosure describes systems, methods, and devices related to secure location measurement sharing. A device may cause to send a first indication associated with a location of the device to a cloud server. The device may cause to send a second indication associated with a ranging information of an access point (AP), wherein the AP is connected to the cloud server. The device may identify an access token received from the cloud server, wherein the access token is associated with providing anonymized AP location information to the AP, and wherein the access token is associated with accessing channel allocation from a channel access database.
    Type: Application
    Filed: November 11, 2020
    Publication date: March 4, 2021
    Inventors: Jonathan Segev, Qinghua Li, Feng Jiang, Xiaogang Chen, Emily Qi, Hassan Yaghoobi, Gadi Shor, Robert Stacey, Dibakar Das
  • Publication number: 20200132829
    Abstract: Embodiments of an access point (AP), station (STA) and method of communication are generally described herein. In a null data packet (NDP) based ranging procedure between a responding STA and an initiating STA that is unassociated with the responding STA, the responding STA may: transmit a broadcast frame that indicates one or more ranging parameters; receive, from the initiating STA, an NDP announcement (NDPA) frame that indicates transmission of a first NDP from the initiating STA; detect the first NDP from the initiating STA; transmit a second NDP for transmission to the initiating STA; and transmit, to the initiating STA, a location measurement report (LMR) that indicates: a reception time of the first NDP at the responding STA, and a transmission time of the second NDP at the responding STA.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Feng Jiang, Qinghua Li, Jonathan Segev, Bahareh Sadeghi, Thomas J. Kenney, Xiaogang Chen, Gadi Shor, Po-Kai Huang, Robert J. Stacey, Laurent Cariou
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20190200171
    Abstract: This disclosure describes systems, methods, and devices related to group-addressed transmissions in wireless communications. A device may determine a first time associated with a first multicast transmission including a first basic service set (BSS) identifier (BSSID) associated with a first BSS of a multi-BSSID set including the first BSS and a second BSS. The device may send a frame including the first time, the first BSSID, wherein the frame indicates that the second BSS may ignore multicast transmissions at the first time, and wherein the first time is during a beacon interval associated with a beacon addressed to the multi-BSSID set. The device may send the first multicast transmission at the first time and may send a second multicast transmission at a second time, wherein the second time is during the beacon interval, and wherein the second multicast transmission includes a second BSSID associated with the second BSS.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Po-Kai Huang, Laurent Cariou, Yaron Alpert, Arik Klein, Danny Ben-Ari, Amir Hiltron, Ido Ouzieli, Johannes Berg, Ofer Hareuveni, Gadi Shor, Ehud Reshef